RIGHTSTART ${ }^{\text {TM }}$ MATHEMATICS

by Joan A. Cotter, Ph.D. with Tracy Mittleider, MSEd

FIRST GRADE LESSONS Second Edition

A special thank you to Kathleen Cotter Clayton for all her work on the preparation of this manual.

Copyright © 2013 by Activities for Learning, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission of Activities for Learning, Inc.

The publisher hereby grants permission to reproduce the worksheets and appendix for a single teacher's use only.

Printed in the United States of America

www.RightStartMath.com

For more information: info@RightStartMath.com
Supplies may be ordered from: www.RightStartMath.com

Activities for Learning, Inc.
321 Hill Street
Hazelton, ND 58544-0468
United States of America
888-775-6284 or 701-782-2000
701-782-2007 fax

ISBN 978-1-931980-64-7
April 2023

RightStart ${ }^{\text {TM }}$ Mathematics Objectives for First Grade

Numeration
Can recognize quantities 1 to 10 without counting Can enter and recognize quantities to 100 on the abacus
Knows even numbers and odd numbers
Can identify even/odd numbers to 120
Can count by $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$

Place Value

Knows 37 as 3-ten 7
Knows traditional names: e.g., 18 as eighteen as well as 1-ten 8
Can trade 10 ones for 1 ten
Can trade 10 tens for 1 hundred
Can trade 10 hundreds for 1 thousand
Can write and read 4-digit numbers

N/A			

Addition

Understands addition as combining parts to form a whole
Knows number facts to 18
Can add 2-digit numbers mentally
Can add 4-digit numbers

N/A	N/A		
N/A			
N/A	N/A		

Subtraction

Understands subtraction as missing addends
Understands subtraction as partitioning
Knows subtraction facts up to 10

N/A	N/A		
N/A	N/A		
N/A	N/A		

Problem Solving

Can solve word problems
Perseveres in solving problems

Geometry

Knows parallel and perpendicular lines
Knows square is a special rectangle
Knows lines of symmetry
Composes shapes from existing shapes
Knows names of special quadrilaterals

Measurement

Can measure to one half of a centimeter
Can measure to one half of an inch
Can measure around a shape

N/A	N/A	N/A	
N/A			
N/A	N/A	N/A	

N/A	N/A	N/A	
N/A	N/A	N/A	
N/A	N/A	N/A	

Fractions

Can partition into halves and fourths
Knows that one fourth is also called a quarter
Knows unit fractions up to tenths

N/A	N/A	N/A	
N/A	N/A	N/A	
N/A	N/A	N/A	

Time

Knows days of the week and months of the year
Can tell and write time in hours \& half hours on analog \& digital clocks
Can tell time to five-minute intervals

N/A			
N/A	N/A		
N/A	N/A		

Money

Knows name and value of penny, nickel, dime, and quarter Can determine the value of three coins

N/A	N/A	N/A	
N/A	N/A	N/A	

Calculator

Can add and subtract whole numbers

N/A	N/A	N/A	

First Grade: Table of Contents

Lesson 1
Lesson 2
Lesson 3
Lesson 4
Lesson 5
Lesson 6
Lesson 7
Lesson 8
Lesson 9
Lesson 10
Lesson 11
Lesson 12
Lesson 13
Lesson 14
Lesson 15
Lesson 16
Lesson 17
Lesson 18
Lesson 19
Lesson 20
Lesson 21
Lesson 22
Lesson 23
Lesson 24
Lesson 25
Lesson 26
Lesson 27
Lesson 28
Lesson 29
Lesson 30
Lesson 31
Lesson 32
Lesson 33
Lesson 34
Lesson 35

Review Subitizing 1 to 5
Review Subitizing 6 and 7 \& the AL Abacus
Review Subitizing Quantities 8 to 10
Review Subitizing Quantities 1 to 10
Review Partitioning with Part-Whole Circle Sets
Review Partitioning Ten
Review Go to the Dump
Review Introducing the Math Balance
Review Writing Addition Equations
Review Tens on the Abacus
Review Tens and Ones
Adding One
More Adding One
Evens and Odds
Even Numbers Plus 2
Odd Numbers Plus 2
The Doubles 1 to 5
The Doubles 6 to 10
Practicing the Doubles
The Commutative Property
Applying the Commutative Property
Solving "Add To" Problems
Quadrilaterals
Building Rectangles
Triangles with Right Angles
Adding Ten to a Number
Adding Ones and Adding Tens
Introducing Hundreds
Numbers 100 to 120
More Hundreds
Enrichment Working with 100s and 1000s
Two-Fives Strategy
More Two-Fives Strategy
Adding Five to a Number
Partitioning 5, 10, and 15

First Grade: Table of Contents

Lesson 36
Lesson 37
Lesson 38
Lesson 39
Lesson 40
Lesson 41
Lesson 42
Lesson 43
Lesson 44
Lesson 45
Lesson 46
Lesson 47
Lesson 48
Lesson 49
Lesson 50
Lesson 51
Lesson 52
Lesson 53
Lesson 54
Lesson 55
Lesson 56
Lesson 57
Lesson 58
Lesson 59
Lesson 60
Lesson 61
Lesson 62
Lesson 63
Lesson 64
Lesson 65
Lesson 66
Lesson 67
Lesson 68
Lesson 69
Lesson 70

Corners ${ }^{\text {me }}$ Exercise without Scoring
Corners ${ }^{\text {™ }}$ Exercise with Scoring
Basic Corners ${ }^{\text {™ }}$ Game
Solving "Combine" Problems
Sums Equal to 11
Review
Assessment 1
Making Rectangles with Tangrams
Continuing Patterns
Continuing Patterns with Geoboards
Designs with Diagonals
The Greater Than Symbol
Adding 9 to a Number
Adding 8 to a Number
Two-Fives Strategy Practice
Adding 8s and 9s Practice
Thousands
Base-Ten Picture Cards
Trading with Base-10 Cards
Adding with Base-10 Cards
More Adding with Base-10 Cards
Enrichment Cotter Tens Fractal—Prep
Enrichment Cotter Tens Fractal
Adding Even Numbers Practice
Adding up to 10 and up to 15
Adding Several Numbers
Solving Problems with Three Addends
Introducing Side 2 of the Abacus
Bead Trading
Adding 2-Digit Numbers and Tens
Corners ${ }^{\text {™ }}$ Game
Mentally Adding 2-Digit Numbers
Long Chain Solitaire
Addition Bingo Game
Days in a Year Problem

First Grade: Table of Contents

Lesson 71
Lesson 72
Lesson 73
Lesson 74
Lesson 75
Lesson 76
Lesson 77
Lesson 78
Lesson 79
Lesson 80
Lesson 81
Lesson 82
Lesson 83
Lesson 84
Lesson 85
Lesson 86
Lesson 87
Lesson 88
Lesson 89
Lesson 90
Lesson 91
Lesson 92
Lesson 93
Lesson 94
Lesson 95
Lesson 96
Lesson 97
Lesson 98
Lesson 99
Lesson 100
Lesson 101
Lesson 102
Lesson 103
Lesson 104
Lesson 105

Adding 1, 10, and 100
Adding 4-Digit Numbers
Continuing the Pattern
Review
Review Games
Assessment 2
Hours on a Clock
Hours and Half-Hours
Minutes on the Clock
More Minutes on the Clock
Hours and Minutes
Adding 4-Digit Numbers on Paper
Enrichment Adding Very Large Numbers
Solving "Take From" Problems
Ten Minus a Number
Subtraction as the Missing Addend
Subtracting by Going Back
Subtracting Consecutive Numbers
Subtracting from 9 and 11
Subtracting with Doubles and Near Doubles
Subtracting by Taking All from Ten
Subtracting by Taking Part from Ten
Finding the Difference
Solving Compare Problems
Addition and Subtraction Equations
Continuing Patterns in the Hundreds
Higher Even and Odd Numbers
Pages in Books and Reading Years
Greater Than or Less Than Symbols
Introducing Area
Halves and Fourths
Fourths and Quarters
Finding Quarter Parts
Measuring with Centimeters
Graphing

First Grade: Table of Contents

Lesson 106
Lesson 107
Lesson 108
Lesson 109
Lesson 110
Lesson 111
Lesson 112
Lesson 113
Lesson 114
Lesson 115
Lesson 116
Lesson 117
Lesson 118
Lesson 119
Lesson 120
Lesson 121
Lesson 122
Lesson 123
Lesson 124
Lesson 125
Lesson 126
Lesson 127
Lesson 128
Lesson 129
Lesson 130
Lesson 131
Lesson 132
Lesson 133
Lesson 134
Lesson 135
Lesson 136
Lesson 137
Lesson 138
Lesson 139
Lesson 140

Measuring with Inches
Paper Measuring Problems
Making Rectangles with Tiles
Enrichment Geometry Solids
Building with Cubes
Mentally Adding with Sums over 100
Pennies, Nickels, and Dimes
Coin Problems
Choosing Coins
Counting Money with Quarters
Using the Fewest Coins
Making Change
Adding with a Calculator
Introducing Multiplication as Arrays
Multiplication as Repeated Addition
More Calculator Activities
Introducing Division
Beginning Fractions
Unit Fractions
Fractions of Twelve and Eight
Comparing Fractions by Weighing
Lines of Symmetry
Finding Symmetry
Tangram and Geoboard Figures
Enrichment Introducing Angles
Number and Operations in Base-10 Review
Number and Operations in Base-10 Games
Number and Operations in Base-10 Assessment
Operations \& Algebraic Thinking Review
Operations \& Algebraic Thinking Games
Operations \& Algebraic Thinking Assessment
Measurement and Data Review and Games
Measurement and Data Assessment
Geometry Review and Games
Geometry Assessment

Lesson 20: The Commutative Property

OBJECTIVES:

1. To understand and apply the commutative property $(a+b=b+a)$

MATERIALS:

1. AL Abacuses
2. Dry erase boards
3. Worksheet 6, The Commutative Property

ACTIVITIES FOR TEACHING:

EXPLANATIONS:

Warm-up. Ask the children to say the months of the year. Then play the Comes After game with the months. Ask: What month comes after April? [May] What month comes after August? [September] What month comes after January? [February]
Ask the children to enter 1 on their abacuses and to name the quantity. [1] Ask them to add another 2 and name the amount. [3] See figure below. Continue to 9. Ask: What was special about the numbers you said? [odd numbers]

Adding 2s to count by twos.
Drawing part-whole circle sets. Show the children how to draw part-whole circle sets as shown below. First, draw the large circle. Second, draw the two lines. Third, draw the small circles by starting at the end of the lines.

Drawing the large circle.

Drawing the lines.

Drawing the small circles.

Commutative property with part-whole circle sets.
Ask the children to draw two part-whole circle sets. Ask them to write parts 4 and 6 in one set and parts 6 and 4 in the other as shown on the top of the next page. Ask the children to find the whole for both. [10]

Part-whole circle sets are a visual tool that help children understand partitioning. The whole is written in the larger circle and the parts, in the smaller circles. Research shows children using them do better in solving story problems.

Some children discover the commutative property on their own, but others need experiences to realize and apply it.
Do not teach the term commutative at this point. The children must thoroughly understand the concept before the word is introduced.

Commutative property with the abacus. Ask them to enter $5+1$ on the first wire of their abacuses and 1 +5 on the second wire. Tell them to write the sums in the whole-circles and to write the equations. See the left figure below.

Repeat for $4+3$ and $3+4$. See the right figures above. Ask them to notice how the equations are the same and how they are different. [same parts, different order] Encourage them to try their own numbers and discuss their conclusions.

Worksheet 6. This worksheet provides more practice in applying the commutative property. Using abacuses helps the children "see" the concept.

$$
\begin{array}{ll}
4+5=9 & 7+2=9 \\
5+4=9 & 2+7=9 \\
6+3=9 & 3+5=8 \\
3+6=9 & 5+3=8 \\
4+3=7 & 7+1=8 \\
3+4=7 & 1+7=8 \\
8+1=9 & 3+7=10 \\
1+8=9 & 7+3=10
\end{array}
$$

In conclusion. Write on a dry erase board $40+30=70$ and $30+40=70$. Ask the children: What do you notice about the equations? [The answers are the same.]

The commutative property is sometimes referred to as the commutative law. Property, meaning attribute or quality, is the preferred term.

II	II
n	m
+	+
m	n

Date:

II	II
m	0
+	+
0	m

II	II
m	$士$
+	+
\pm	m

II	II
-	∞
+	+
∞	-

Lesson 61: Adding Several Numbers

OBJECTIVES:

1. To practice adding several numbers

2 . To find 2,3 , or 4 numbers that total 15

MATERIALS:

1. Dry erase boards
2. Worksheet 21, Adding Several Numbers
3. Math Card Games book, A53

ACTIVITIES FOR TEACHING:

Warm-up. Ask: How can you add three numbers? [First add any two numbers, then add the last number.]
Ask the children to solve the following problem using a part-whole circle set:

John has 11 apples and 3 friends to share the apples with. How could John split the apples among the 3 friends?

The part-whole circle set with three parts.

One way to partition 11 into 3 parts.

Ask the children: 9 and what equals 15? [6] 7 and what equals 15 ? [8] 5 and what equals 15 ? [10] 8 and what equals 15? [7] 6 and what equals 15 ? [9]
Ask: What kind of number do you always get when you add two even numbers? [even number]
Ask the children to give the ways to make $11 ; 3$ and what? [8] 4 and what? [7] 10 and what? [1] 9 and what? [2]

ACTIVITIES FOR TEACHING:

EXPLANATIONS:
Worksheet 21. Give the children the worksheet. Remind them they can add the numbers in any order. The problems and solutions are below:

$$
\begin{aligned}
& 3+2+1=6 \\
& 5+2+2=9 \\
& 4+3+2=9 \\
& 1+2+7=10 \\
& 2+3+6=11 \\
& 3+5+5=13 \\
& 2+7+8=17 \\
& 10+2+3=15 \\
& 6+5+6=17 \\
& 2+9+9=20
\end{aligned}
$$

Preparation for Rows and Columns game. Write

 the following numbers:$$
\begin{array}{llll}
9 & 4 & 1 & 5
\end{array}
$$

and ask the children which numbers they could use to make 15. $[9,1,5]$ Ask several children how they found the numbers. They may see the 9 and 1 making 10 and with the 5 making 15 .
Repeat for

$$
4497
$$

This sum $[4,4,7]$ can be seen with the 4 and 4 giving 8 , which added to 7 is 15 .
Repeat for

$$
3369
$$

This time there are two solutions. [3, 3, 9 or 6,9$]$ Since the object of this new game will be to collect the most cards, the first solution is preferred.
Rows and Columns game. Play the Rows and Columns game from the Math Card Games book, A53.
In conclusion. Ask: What is $1+2+3+4+5$? [15]
\qquad
Date: \qquad

$3+2+1=-$
$5+2+2=-$
$4+3+2=-$
$1+2+7=-$
$2+3+6=$

$3+5+5=-$
$2+7+8=-$
$10+2+3=-$
$6+5+6=-$
$2+9+9=$

Lesson 93: Finding the Difference

OBJECTIVES:

1. To learn the term difference
2. To solve compare problems

MATERIALS:

1. Sums Practice 4
2. Geared clocks
3. Large AL Abacus
4. AL Abacuses
5. Math Card Games book, S13

ACTIVITIES FOR TEACHING:

Warm-up. Ask the children to do the next two problems on Sums Practice 4 without their abacuses:

1398	3149
+1406	+7788
2804	$\mathbf{1 0 9 3 7}$

Ask: How could you use the Taking Part From Ten strategy for finding $14-7$? [Take 4 from the 4 and 3 from the ten to get 7.] How could you use this strategy for finding $17-7$? [Take 7 from the 7 to get ten.]

Ask: How could you use the Taking All From Ten strategy for finding $12-7$? [Take 7 from 10 and adding $3+2=5$.] How could you use this strategy for finding $13-6$? $[4+3=7]$

Set the hands of the geared clock to $4: 15$ and ask the children to say the time. [4:15] Ask them to set their clocks for various times and state those times.
Finding differences on the abacus. Enter 4 and 6 on the top two wires of the large abacus. See the left figure below. Ask the children: What is the difference in quantity between the 4 and 6? [2]
Ask: Did you add 4 and 6 to find the difference? [no] What did you do? [subtract] Ask them to put the numbers in a part-whole circle set. See the right figure below. Explain that the larger number goes in the whole-circle. The smaller number and difference go in the part-circles.
Ask a child to write the equations.

Find the difference between 4 and 6 .

$$
\begin{aligned}
& 6-4=2 \text { or } \\
& 4+\underline{2}=6
\end{aligned}
$$

Larger number on top; smaller number and difference in part-circles.

ACTIVITIES FOR TEACHING:

Repeat for difference between 9 and 2. See figures below.

Find the difference between 9 and 2 .

$$
\begin{aligned}
& 9-2=7 \text { or } \\
& 2+7=9
\end{aligned}
$$

The difference is 7 .

Problem. Read the following problem to the children:
Mikayla has a book with 36 pages and Nathan has a book with 50 pages. Whose book has more pages and how many more? [Nathan, 14 more pages]
Draw a part-whole circle set and ask: Which number goes in the whole-circle? [50] What number goes in a partcircle? [36] See the left figure below. Ask: Whose book has more pages? [Nathan] How many more? [14] Ask a child to write the equation.

$$
50-36=\underline{14} \text { or } 36+\underline{14}=50
$$

The part-whole circle set for a compare problem.
Harder Difference War game. Play the Harder Difference War game from the Math Card Games book, S13.
In conclusion. Ask the children: When you add, what do you call the answer? [sum] When you subtract, what do you call the answer? [difference]

Children needing an easier game could play Difference War, S12.

Lesson 104: Measuring with Centimeters

OBJECTIVES:

1. To measure in centimeters
2. To collect information and categorize it
3. To learn the term data

MATERIALS:

1. Sums Practice 6
2. Worksheet 46, Measuring with Centimeters
3. Centimeter cubes
4. One set of tangrams per child

ACTIVITIES FOR TEACHING:

EXPLANATIONS:

Warm-up. Ask the children to do the last two problems on Sums Practice 6. The solutions are:

7129	4233
+1516	+726
8645	4959

Ask: What is another word for quarter? [a fourth] What are the two names for one half of a half? [one fourth, a quarter] How many quarters in a whole? [4] How many quarters in a half? [2]

Ask: Which is more, one half or two quarters? [same] Which is less, one half or three quarters? [one half]
Ask the children to solve the following problem.
There are 15 butterflies flying by the flowers. In the group, 6 butterflies are yellow. How many of the butterflies are not yellow? [9 butterflies]
Ask the children to mentally add $47+32$, $[77,79] 47+22$, [67, 69] $100+87,[180,187]$ and $67+67$. [127]

Tangrams lengths. Distribute the tangrams to the children. Ask: Are all edges of your tangram pieces the same length? [no] Explain: In this lesson you are going to find out how many different lengths the edges of the tangram pieces have. You will also find out which length is the most common and which is the least common.
Worksheet 46. Distribute the worksheet and the centimeter cubes to the children. Show them a centimeter cube and explain that the distance along an edge is 1 centimeter.
Ask them to measure the longest side of the large triangle in centimeters. Demonstrate as shown below in the left figure. Ask: How many centimeters long is it? [10 cm]

Shorter side is 7 cm .

According to Clements \& Sarama, researchers found that children are often confused when asked to measure with various non-standard units. Only, after they are familiar with the concept of measurement, will they be able to understand the need for standard measurements.

Next ask them to measure the side of the large triangle. [7 cm] Repeat for the other side. [7 cm] See the right figure on the previous page.

Point the first figure from the worksheet so the children can see. Ask them what each side measured; write it on the corresponding side of the figure. Tell them that we write cm for centimeter. See the left figure below.

The lengths of the sides of the first 3 tangram pieces.
Tell the children their worksheets show all the tangrams pieces. Tell them to measure the sides using the centimeter cubes and write the lengths for the first three triangles on their worksheets. See figures above.
Measuring the square. Tell the children to measure a side of the square. Ask: Does it measure 3 cm ? [too little] Does it measure 4 cm ? [too much] Tell them: The side measures 3 and a part of a another centimeter. What part is it? [one half] Tell them: We say it is 3 and one half centimeters. Show them how to write $3 \frac{1}{2} \mathrm{~cm}$.
Do the same thing with the last three pieces. Answers are shown below.

The lengths of the sides of the last 4 tangram pieces.
Worksheet Question 2. Explain to the children that they have a lot of information, called data; now they can organize it in the chart. First, they are to count the number of sides having 10 cm and write it below the box saying 10 cm . Next they are to find the number of sides that are 7 cm long and write it below the 7 cm . Do the same thing with the last two lengths. The solutions are:

10	7	5	$3 \frac{1}{2}$
2	5	6	10

Worksheet Question 3. Here they are to tell what they learned about the lengths.
In conclusion. Ask: Are you surprised there are only four different lengths?

Some children will realize that shapes may be identical and measuring them again is unnecessary. Other children will want to measure everything, which is necessary for them.

Although fractions are not common within the metric system, they are permissible.
Name:

