RIGHTSTART ${ }^{\text {TM }}$ MATHEMATICS

 by Joan A. Cotter, Ph.D. with Tracy Mittleider, MSEd
SECOND GRADE LESSONS
 Second Edition

A special thank you to Kathleen Cotter Clayton for all her work on the preparation of this manual.

Copyright © 2014 by Activities for Learning, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission of Activities for Learning, Inc.

The publisher hereby grants permission to reproduce the worksheets and appendix for a single teacher's use only.

Printed in the United States of America

www.RightStartMath.com

For more information: info@RightStartMath.com
Supplies may be ordered from: www.RightStartMath.com

Activities for Learning, Inc.
321 Hill Street
Hazelton, ND 58544-0468
United States of America
888-775-6284 or 701-782-2000
701-782-2007 fax

ISBN 978-1-931980-72-2
April 2023

RightStart ${ }^{\text {tM }}$ Mathematics Objectives for Second Grade

Name \qquad Year \qquad

Numeration

Can skip count by 2 s, by 5 s, by 10 s, and by 100 s to 1000
Can compare numbers up to 1000 using $<,=$, and $>$
Can read and construct Roman numerals to 1000
Understands place value and can write numbers to 9999 with numerals, words, and expanded form

Addition

Knows addition facts
Can add 2-digit numbers mentally
Can add 4-digit numbers

Subtraction

Understands subtraction
Knows subtraction facts
Can subtract 2-digit numbers mentally
Can subtract 4-digit numbers

N/A			
N/A			
N/A			
N/A			

Multiplication

Understands multiplication as arrays
Knows multiplication facts to 5×5

Problem Solving

Solves problems in more than one way
Persists in solving problems
Can solve addition and subtraction problems
Can solve compare problems

Time and Money

Can tell time to the minute
Can find the value of up to five coins and make change

Measurement

Can measure in inches, feet, centimeters, and meters
Can find perimeter and area in customary and metric
Can read a ruler to halves

N/A	N/A	N/A	
N/A	N/A	N/A	
N/A	N/A	N/A	

Geometry

Can identify basic 2D and 3D shapes
Can determine number of angles, sides, and faces in shapes

N/A	N/A	N/A	
N/A	N/A		

Fractions

Understands fractions as a type of division
Knows unit fractions up to $1 / 10$

N/A	N/A	N/A	
N/A	N/A	N/A	

Data

Gathers and shows data with line plots and intreprets results

Calculator

Can add, subtract, and multiply whole numbers
Can solve two-step problems

N/A	N/A	N/A	
N/A	N/A	N/A	

Second Grade: Table of Contents

Lesson 1
Lesson 2
Lesson 3
Lesson 4
Lesson 5
Lesson 6
Lesson 7
Lesson 8
Lesson 9
Lesson 10
Lesson 11
Lesson 12
Lesson 13
Lesson 14
Lesson 15
Lesson 16
Lesson 17
Lesson 18
Lesson 19
Lesson 20
Lesson 21
Lesson 22
Lesson 23
Lesson 24
Lesson 25
Lesson 26
Lesson 27
Lesson 28
Lesson 29
Lesson 30
Lesson 31
Lesson 32
Lesson 33
Lesson 34
Lesson 35

Review Subitizing Quantities 1 to 7
Review Subitizing Quantities 8 to 10
Review Tens and Ones on the Abacus
Review Hundreds on the Abacus
Review The Math Balance
Review Part-Whole Circle Sets
Ones Strategy on the Addition Table
Twos Strategy on the Addition Table
Tens and Near Tens on the Addition Table
Two-Fives Strategy on the Addition Table
Doubles Strategies on the Addition Table
Making Ten Strategy on the Addition Table
The Completed Addition Table
Evens and Odds
Early Roman Numerals from 1 to 49
Early Roman Numerals from 1 to 499
Roman Numerals from 1 to 4999
Trading on Side 2 of the AL Abacus
Adding on Side 2 of the AL Abacus
Adding 2-Digit Numbers
Mental Addition
Adding Several 2-Digit Numbers
Review and Games 1
Composing Numbers in the Thousands
Adding 1, 10, and 100 to Numbers
Comparing Numbers
Adding with Base-10 Picture Cards
More Adding with Base-10 Picture Cards
Adding 4-Digit Numbers on the AL Abacus
Adding 4-Digit Numbers on Paper
Review and Games 2
Introducing Arrays
Multiplication through Arrays
Comparing Addition and Multiplication
Multiplication Equations

Second Grade: Table of Contents

Lesson 36
Lesson 37
Lesson 38
Lesson 39
Lesson 40
Lesson 41
Lesson 42
Lesson 43
Lesson 44
Lesson 45
Lesson 46
Lesson 47
Lesson 48
Lesson 49
Lesson 50
Lesson 51
Lesson 52
Lesson 53
Lesson 54
Lesson 55
Lesson 56
Lesson 57
Lesson 58
Lesson 59
Lesson 60
Lesson 61
Lesson 62
Lesson 63
Lesson 64
Lesson 65
Lesson 66
Lesson 67
Lesson 68
Lesson 69
Lesson 70

Multiples of 2 to 5
Area
Area and Perimeter
Assessment Review 1
Review Games
Assessment 1
Solving Missing Addend Problems
Ones and Twos Subtraction Strategies
Consecutive Numbers Subtraction Strategies
Tens and Near Tens Subtraction Strategies
Subtracting from Five Strategy
Subtracting from Ten Strategies
Subtraction Facts Practice
More Subtraction Facts Practice
Completing the Subtraction Table
Review and Games 4
Subtracting Fives and Tens
Subtracting 1-Digit Numbers
Subtracting 2-Digit Numbers
Finding and Correcting Errors
Subtracting from One Hundred
More Subtracting 2-Digit Numbers
Tens and Subtracting 2-Digit Numbers
Review and Games 5
Drawing Five-Sided Stars
Drawing Horizontal Lines
Drawing Vertical Lines
Drawing Diagonals in a Hexagon
Dividing Equilateral Triangles into Halves
Dividing Equilateral Triangles into Thirds
Dividing Equilateral Triangles into Fourths
Making Pyramids
Dividing Equilateral Triangles into Twelfths
Dividing Equilateral Triangles into Sixths
Enrichment More Dividing Triangles

Second Grade: Table of Contents

Lesson 71
Lesson 72
Lesson 73
Lesson 74
Lesson 75
Lesson 76
Lesson 77
Lesson 78
Lesson 79
Lesson 80
Lesson 81
Lesson 82
Lesson 83
Lesson 84
Lesson 85
Lesson 86
Lesson 87
Lesson 88
Lesson 89
Lesson 90
Lesson 91
Lesson 92
Lesson 93
Lesson 94
Lesson 95
Lesson 96
Lesson 97
Lesson 98
Lesson 99
Lesson 100
Lesson 101
Lesson 102
Lesson 103
Lesson 104
Lesson 105

Drawing a Star in a Hexagon
Drawing Another Star in the Hexagon
Tessellating
Geometry Terms and Symmetry
Assessment Review 2
Tessellation Art and Game Day
Assessment 2
Reading Scales
Drawing a Clock
Hours in a Day
Hours and Minutes on a Clock
Telling Time to Five Minutes
More Telling Time
Telling Time to the Minute
Review and Games 7
Comparison Problems with More
Comparison Problems with Fewer or Less
Subtracting with Base-10 Picture Cards
Subtracting on Side 2 of the AL Abacus
Recording Subtracting on Paper
Subtraction Activities
More Subtraction Activities
Review and Games 8
Pennies, Nickels, and Dimes
Adding the Value of Coins
Making Change from Fifty Cents
Ways to Make a Dollar
Making Change from a Dollar
Dollars and Cents
Money Problems
Review and Games 9
Measuring in Centimeters
Measuring in Centimeters and Inches
Measuring in Feet
Problems Using Feet

Second Grade: Table of Contents

Lesson 106
Lesson 107
Lesson 108
Lesson 109
Lesson 110
Lesson 111
Lesson 112
Lesson 113
Lesson 114
Lesson 115
Lesson 116
Lesson 117
Lesson 118
Lesson 119
Lesson 120
Lesson 121
Lesson 122
Lesson 123
Lesson 124
Lesson 125
Lesson 126
Lesson 127
Lesson 128
Lesson 129
Lesson 130
Lesson 131
Lesson 132
Lesson 133
Lesson 134
Lesson 135
Lesson 136
Lesson 137
Lesson 138
Lesson 139
Lesson 140

Measuring with the Meter Stick
Estimating Lengths
Reading Rulers
Measuring Area
Area on Geoboards
Review and Games 10
Introducing Line Plots
Addition Sums Line Plot
Area Line Plots
Making Squares with Tangrams
Making Rectangles with Tangrams
Making Trapezoids with Tangrams
Making Reflections with Tangrams
Missing Factors
More Missing Factors
Introducing Division
Unit Fractions
Fraction Chart Project
Non-Unit Fractions
Solving Fractional Problems
Two Fractions Equaling One
One Made with Halves, Quarters, \& Eighths
Fractions Games
Introducing Negative Numbers
More Negative Numbers
Building Prisms and Pyramids
Comparing Cubes
Geometry Review
Geometry Assessment
Measurement and Data Review and Games
Measurement and Data Assessment
Numbers \& Operations in Base Ten Review
Numbers \& Operations in Base Ten Assessment
Operations \& Algebraic Thinking Review
Operations \& Algebraic Thinking Assessment

Lesson 26: Comparing Numbers

OBJECTIVES:

1. To compare numbers using $=,<$, and $>$ symbols

MATERIALS:

1. Dry erase boards
2. Worksheet 9, Comparing Numbers

ACTIVITIES FOR TEACHING:

Warm-up. Ask: What is 34 plus 10? [44] What is 36 plus 10 ? [46] What is 72 plus 10 ? [82] What is 89 plus 10? [99]
Write for all to see $1000+800+30+1$. Ask the children to write their answer on their dry erase board. [1831] Repeat for $8000+100+40+5$. [8145]
Ask: Which is more, ten hundreds or one thousand? [same] Which is more, one hundred or one thousand? [one thousand]
Comparing numbers. Write for the children to see:

$$
9 _6+3
$$

Ask: Is 9 equal to 6 plus 3? [yes] What do we write on the line? [an equal sign] Tell a child to write an equal sign.
Below the first equation, write:

$$
10 _6+3
$$

Ask: Is 10 equal to 6 plus 3? [no] Is 10 greater than or less than $6+3$? [greater]
The $>$ symbol. Show them how to write the greater than symbol by starting at the top of the larger number, draw a line to the middle of the smaller number, and finish by drawing to the bottom of the larger number. See below.

$$
10 \geqslant 6+3 \quad 10 \geqslant 6+3
$$

The < symbol. Tell the children suppose the equation is changed and written as:

$$
6+3 _10
$$

Write the equation below the first two equations. Ask: What symbol do we need now? [less than] Tell them we can write it the same way by starting at the larger number. See below.

$$
6+3<10 \quad 6+3 \leqslant 10
$$

EXPLANATIONS:

The > and < symbols were taught in first grade by drawing two dots at the greater number and one dot at the lesser number, and then connecting the dots.

$$
10>6+3
$$

Reading the > and < symbols. Show the children how to tell the difference when reading the greater than and less than symbols. Write >, cover it, and slowly uncover it from left to right as shown below on the left. Ask: How many points do you see? [2] Say: Two points mean greater than. Repeat for the < symbol, uncovering it from left to right as shown below on the right. Ask: How many points do you see? [1] Say: One point means less than.

Write the three equations and ask the children to read them aloud.
$9=6+3$ [Nine equals six plus three.]
$10>6+3$ [Ten is greater than six plus three.]
$6+3<10$ [Six plus three is less than ten.]
More comparisons. Write the following:

$$
48
$$

\qquad $40+7$
Ask: Which symbol do we need? [>] Ask a child to explain their answer. [48 is 40 plus 8 , which is more than 40 plus 7.]

Write another example:

$$
201+10 _211
$$

Ask: Which symbol do we need? [=] Ask a child to explain their answer. [1 plus $10=11 ; 200$ plus 11 does equal 211.] Write a third example:

$$
863+1 _861+10
$$

Ask: Which symbol do we need? [$<$] Ask a child to explain their answer. [863 plus 1 equals $864 ; 861$ plus 10 equals 871, which is more than 864.]
Worksheet 9. Give the children the worksheets and have them complete the equations. The solutions are below.

```
38+6>30 + 6
506<560
99 + 10 = 109
250+10=251+9
700+80>708
1000=300+700
611 + 100>611 + 10
95+10 + 5 = 110
455 + 10 + 1> 100 + 365
```

In conclusion. Ask: What is the mathematical word for more? [greater] What is the opposite of greater? [less] Name all numbers greater than 5 and less than 9. [6, 7, and 8]
\qquad
Date: \qquad
Write $>,<$, or $=$ on the lines to make the equations true.

$38+6 _30+6$	$99+64 _100+64$
$506 _560$	$211 __200+10$
$99+10 _109$	$99+100 _190$
$250+10 _251+9$	$89+63 _100+73$
$700+80 _708$	$38 _30+8$
$1000 _300+700$	$461 _400+60$

Write >, <, or = and explain your answer.
$611+100$ \qquad $611+10$
\qquad
\qquad
$95+10+5$ \qquad 110
\qquad
\qquad
$455+10+1 _100+365$

Lesson 38: Area and Perimeter

OBJECTIVES:

1. To introduce the term perimeter
2. To learn about square inches
3. To learn about square cm

MATERIALS:

1. AL Abacuses
2. Tiles
3. Centimeter cubes
4. Worksheet 17, Area and Perimeter

ACTIVITIES FOR TEACHING:

Warm-up. Ask: What is area? [the space that something takes up]
Ask the children to say the multiples of 4 as a child moves over groups of 4 s on the abacus to $40 .[4,8,12, \ldots, 40$] Ask the children to say the multiples of 3 to 30 . $[3,6$, 9, ..., 30]
Play the Comes Before game for counting by 2 s . Ask: What comes before 8, [6] 12, [10] 40, [38] 20, [18] and 38? [36] Repeat using 5s.
Ask the children to say the months of the year. Then play the Comes After game. Ask: What month comes after March? [April] After August? [September] After October? [November]
Inches. Distribute the tiles and centimeter cubes to the children. Tell them to look at one tile. See the left figure below. Remind them that the distance along one edge is 1 inch. Ask: What is the distance around the whole square? [4 inches]

3 by 2 array
Tell them the math word for distance around a shape is perimeter. Ask: What is the perimeter of one tile? [4 inches] Show them how to write it:

$$
4 \text { inches }
$$

Tell them to place another tile next to the first tile as shown above in the second figure. Ask: What is the perimeter now? [6 inches] Ask a child to write it for all to see.

$$
6 \text { inches }
$$

EXPLANATIONS:

To remember the basic meaning of the word perimeter, some children might find it helpful to point to each side of a rectangle while saying "pe-rim-e-ter" as shown below:

Worksheet 17, problems 1 and 2. Distribute the worksheets. Tell the children to solve the first two problems. Remind them to write the word inches. See the figures below.

Rectangle F.

Rectangle G.

1. $2+2+2+2=8$ inches
2. $\mathbf{4 + 2 + 4 + 2 = 1 2 \text { inches }}$

Ask for explanations on how to solve the problems.
Square inches. Tell them to look again at one tile. Say: We can measure area with these tiles. The area of one tile is 1 square inch. Ask: What is the area of 2 tiles? [2 square inches]
Problems 3 and 4. Tell the children to solve problems 3 and 4 . Remind them to write the words square inches. See the same figures above.
Ask for explanations. The areas are:
3. $\mathbf{2}$ by $\mathbf{2}=\mathbf{4}$ square inches
4. $\mathbf{4}$ by $\mathbf{2}=\mathbf{8}$ square inches

Ask: Do you think rectangle G is twice as large as rectangle F? [Yes, rectangle F is 4 square inches and rectangle G is 8 square inches, which is twice as much.]
Ask: Is the perimeter twice as much? [no] Ask for explanations.
Square centimeters. Tell them to look at one centimeter cube. Say: We measured area with these cubes in the last lesson. Ask: What do you think we call the area of one cube? [square centimeter]
Problems 5-8. Ask the children to finish the worksheet. Tell them that they do not have to fill in the whole rectangles with the cubes if they can figure out the answers without all of them. The solutions are shown below.
5. $5+5+5+5=20 \mathrm{~cm}$
6. $\mathbf{1 0 + 5 + 1 0 + 5 = 3 0 ~ c m}$
7. 5 by $5=25 \mathrm{sq} \mathrm{cm}$
8. $\mathbf{1 0}$ by $\mathbf{5}=\mathbf{5 0} \mathbf{~ s q ~ c m}$

In conclusion. Ask: What is perimeter? [the distance around] What is area? [the amount of space something takes up]

The term sq cm is used only temporarily. The standard cm^{2} will be introduced later.
\qquad
Date: \qquad

1. Find the perimeter of rectangle F with tiles.

1 inch

1 square inch
3. Find the area of rectangle F with tiles.
4. Find the area of rectangle G with tiles.
\qquad
5. Find the perimeter of rectangle F with centimeter cubes.

1 cm
1 sq cm
6. Find the perimeter of rectangle G with centimeter cubes.
7. Find the area of rectangle F with centimeter cubes.
8. Find the area of rectangle G with centimeter cubes.

Lesson 86: Comparison Problems with More

OBJECTIVES:

1. To solve word problems that compare using the word more

MATERIALS:

1. Base-10 picture cards
2. Place-value cards
3. Worksheet 54, Comparison Problems with More
4. AL Abacuses

ACTIVITIES FOR TEACHING:

EXPLANATIONS:

Warm-up. Show a 10 from the base-10 cards and say: Suppose I had 80 of these cards. Ask: How much would it show? [800] Have a child explain it. [Each group of ten cards is 100 , so 8 groups of 10 would be 800.] Show the 800 place-value card and ask: Is it the same? [yes] Why? [it shows 80 -ten or 8 hundred]

Ask: Which is more, 2 thousand or 6 hundred? [2 thousand] Which is greater, 1 thousand or 10 hundred? [same] Which is less, 1 hundred or 11? [11]
Ask: How much is 1000 plus 5000? [6000] How much is 6000 plus 2000? [8000] How much is 2000 plus 5000? [7000]
Worksheet 54. Distribute the worksheets and abacuses. Explain to the children that we have done story problems where things were put together or partitioned. The problems for today and in the next lesson are compare problems. This means we will compare two things and think about which is longer, shorter, taller, more, less, fewer, and so on.

Problem 1. Tell the children to read the first problem.
Mr. Black is 6 feet tall. His son is 4 feet tall. How much taller is the father?

Tell them to show it on their abacuses. See the left figure below. Ask: What is the larger amount? [6] Tell the children to write the larger amount in the whole-circle. Ask: What is the smaller amount being compared? [4] Tell them to write it in the left part-circle. Ask: What is the difference? [2] Tell them to write the difference in the right part-circle. See below. Tell the children to write the equation. [6-4 = 2 feet $]$

This lesson is a mixture of compare problems to discourage the children from memorizing a particular procedure.

The answer is underlined so that the missing portion of the equation is quickly identified.

ACTIVITIES FOR TEACHING:
Model checking. Draw a partwhole circle set as shown on the right. Tell them it is a math model for solving compare problems.
Problem 2. Ask the children to read and solve problem 2.

Mrs. Jackson is 170 cm tall. Her

Part-whole circle set model for compare problems. daughter is 119 cm tall. How much taller is the mother? [$170-119=51 \mathrm{~cm}$]
Then ask them to compare results with their partners.
Problem 3. Tell the children to read problem 3.
Jasmine has five pillows. Oliver has four more pillows than Jasmine. How many pillows does Oliver have?
Ask: Who has more pillows, Jasmine or Oliver? [Oliver] How do you know? [Oliver has four more than Jasmine.] Tell them to show it on the abacus. Then ask: Are the five pillows the larger or smaller set? [smaller] Ask: What is the four? [difference] Tell them to solve the problem on their worksheets. See below. Discuss their solutions.

5 pillows and 4 more for Oliver.

Ask: Does the answer make sense? [Jasmine has 5. Oliver has 9 , which is 4 more than Jasmine.]
Problem 4. Tell them to solve problem 4.
Logan has 12 more cherries than Matt. Matt has 25 cherries. How many cherries does Logan have? $[25+12=\underline{37}]$

Problem 5. Tell the children to read problem 5.
Shauna has 3 more flowers than Jacob. Shauna has 5 flowers. How many flowers does Jacob have?
Ask: Are the three flowers a difference or the number of flowers somebody has? [difference] Ask them to solve it on their abacuses and on their worksheets. See below.

5 flowers; Jacob has 3 less.

Problem 6. The equation for this problem is $20-11=\underline{9}$.
In conclusion. Ask: Is the difference a part or a whole? [part]
\qquad
Date: \qquad
Write the equations and solve the problems.

1. Mr. Black is 6 feet tall. His son is 4 feet tall. How much taller is the father?

2. Mrs. Jackson is 170 cm tall. Her daughter is 119 cm tall. How much taller is the mother?

3. Jasmine has five pillows. Oliver has four more pillows than Jasmine. How many pillows does Oliver have?

4. Logan has 12 more cherries than Matt. Matt has 25 cherries. How many cherries does Logan have?

5. Shauna has 3 more flowers than Jacob. Shauna has 5 flowers. How many flowers does Jacob have?

6. James has 20 grapes. James has 11 more grapes than Lily. How many grapes does Lily have?

Lesson 126: Two Fractions Equaling One

OBJECTIVES:

1. To find pairs of fractions equaling one

MATERIALS:

1. Warm-up Practice 7
2. Fraction pieces
3. Fraction cards, 1 set per pair of children*
4. Math Card Games book, F3
5. Worksheet 86, Non-Unit Fractions

ACTIVITIES FOR TEACHING:

Warm-up. Ask the children to do section 3 on Warm-up
Practice 7. The questions and hundred chart are shown below.

Fractions equaling 1. Give the children the fraction pieces and ask them to assemble the charts. When the fraction charts are complete, ask: How many thirds are needed to equal one? [three] If you have two thirds, how much more do you need to equal one? [one third]
Next ask them to separate the one and to lay the fraction pieces for three fifths under the one. Ask: How many more fifths are needed to make one? [two fifths] See the figure below.

Three fifths and two fifths make one.
Repeat for other fractions, such as one sixth, [five sixths] seven tenths, [three tenths] and one half. [one half] Write:

$$
\frac{3}{8}
$$

Ask what is needed to make one. [five eighths] Repeat for one tenth [nine tenths] and two thirds. [one third]

EXPLANATIONS:

*Remove the percentage cards before giving them to the children.

To focus the students' attention on fractions, not arithmetic, avoid teaching the algorithm that the sum of the two numerators equals the denominator.

ACTIVITIES FOR TEACHING:
Finding pairs to equal one. Distribute the fraction cards to pairs of children. Tell them to spread their cards out face up. Next they are to pick up a card and find the match so the two cards equals one. Tell them to find ten different pairs.

Concentrating on One game. Have the children play the Concentrating on One game, found in the Math Card Games book, F3, with the pairs of cards that they found.
Worksheet 86. Distribute the worksheets from a prior lesson and tell the children to complete the worksheet. The solutions are shown below.

In conclusion. Ask: Why does it take 10 tenths to make 1, but only 3 thirds to make 1 ? [tenths are smaller] How many twelfths do you need to make a whole? [twelve]

EXPLANATIONS:

By finding these matches, the children are sorting the cards they will need to play the Concentrating on One game.

If the children have duplicate pairs, they can still play the game, although it may take a bit longer.

The pairs on the worksheet are fractions not found on the cards, which have only simplified fractions.
\qquad
Date:
Write the fractions that are circled in each row.

Match the fractions that will be equal to one.

