RIGHTSTART ${ }^{\text {TM }}$ MATHEMATICS

by Joan A. Cotter, Ph.D. with Kathleen Cotter Lawler

FIFTH GRADE LESSONS Second Edition

A special thank you to Maren Ehley, Rebecca Walsh, and Kelsie Burza for their work in the final preparation of this manual.

Copyright © 2017 by Activities for Learning, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission of Activities for Learning, Inc.

The publisher hereby grants permission to reproduce the Worksheets and Appendix for a single teacher's use only.

Printed in the United States of America

www.RightStartMath.com

For more information: info@RightStartMath.com

Supplies may be ordered from: www.RightStartMath.com

Activities for Learning, Inc.
321 Hill Street
Hazelton, ND 58544-0468
United States of America
888-775-6284 or 701-782-2000
701-782-2007 fax

ISBN 978-1-942943-16-7
May 2023

RightStart ${ }^{T M}$ Mathematics Objectives for Fifth Grade

Numeration

Finds squares and square roots
Reads, writes, rounds, and compares numbers

Multiplication and Division

Applies commutative, associative, and distributive properties
Multiplies multiples of 10 and exponents
Does division using factors
Does long division by a two-digit divisor

Problem Solving

Solves two-step problems involving fractions and decimals
Uses dimensional analysis to solve problems

Decimals and Percents

Rounds and compares decimals to the thousandths
Adds and subtracts decimals to three decimal places
Divides decimals by whole numbers and decimals
Understands and uses simple percentages
Solves percentage problems with a calculator
Quarter 1 Quarter 2 Quarter 3 Quarter 4

N/A			

N/A	N/A	N/A	

N/A			
N/A			
N/A			
N/A	N/A		
N/A	N/A		

Fractions

Adds and subtracts mixed fractions with unlike denominators
Converts between mixed numbers and improper fractions
Finds equivalent fractions on the multiplication table
Multiplies and divides various fractions

N/A	N/A		
N/A	N/A		
N/A	N/A		
N/A	N/A		

Measurement

Understands cubic units: $\mathrm{cm}^{3}, \mathrm{dm}^{3}, \mathrm{in}^{3}, \mathrm{ft}^{3}$, and yd^{3}
Uses dimensional analysis to convert measurements
Converts measurements between SI and US customary (e.g., m to ft)

N/A	N/A		
N/A	N/A	N/A	
N/A	N/A	N/A	

Probability and Combinations

Calculates the probability of an event
Calculates probabilities
Finds probabilities using combinations

N/A	N/A		
N/A	N/A		
N/A	N/A		

Coordinate Systems

Finds locations using a coordinate system
Makes line plots and interprets data
Finds points on a Cartesian coordinate system using ordered pairs Places negative points on a Cartesian coordinate system Plots equations on a Cartesian coordinate system

N/A	N/A	N/A	
N/A	N/A	N/A	

Geometry

Classifies shapes by attributes
Scales figures
Constructs regular polygons incribed in a circle
Constructs inscribed circles in polygons
Constructs inscribed squares in triangles

N/A	N/A	N/A	
N/A	N/A	N/A	

Fifth Grade Table of Contents

Lesson 1:	Review The AL Abacus and Addition Strategies
Lesson 2:	Review Mental Adding
Lesson 3:	Review Subtraction Strategies
Lesson 4:	Review Multiplication Strategies
Lesson 5:	Review The Math Balance
Lesson 6:	Review Division Strategies
Lesson 7:	Review Finding Remainders
Lesson 8:	Remainders on the Math Balance
Lesson 9:	Review Short Division
Lesson 10:	Review Reminders after Dividing by Nine
Lesson 11:	Review Introducing Check Numbers
Lesson 12:	Review Using Check Numbers
Lesson 13:	Review Multivides
Lesson 14:	Order of Operations
Lesson 15:	Making Expressions
Lesson 16:	Square Numbers
Lesson 17:	Cubic Numbers and Higher Powers
Lesson 18:	Composing Expressions
Lesson 19:	Expanded Notation with Exponents
Lesson 20:	Multiplying and Dividing by Tens
Lesson 21:	Dividing with a Horizontal Line
Lesson 22:	Review and Games 1
Lesson 23:	Review Fraction Basics
Lesson 24:	Tenths and Hundredths
Lesson 25:	Thousandths
Lesson 26:	Adding with Decimals
Lesson 27:	Subtracting with Decimals
Lesson 28:	Averaging
Lesson 29:	More Averaging
Lesson 30:	Rounding Decimals

Fifth Grade Table of Contents

Lesson 31: Rounding and Comparing Decimals
Lesson 32: Review and Games 2
Lesson 33: Review Multiplying by Two Digits
Lesson 34: Dividing by Divisors Greater Than Ten
Lesson 35: Two-Digit Multivides
Lesson 36: Multiplying Tenths by a Whole Number
Lesson 37: Dividing Decimals by Whole Numbers
Lesson 38: Multiplying Tenths by Tenths
Lesson 39: Multiplying Hundredths
Lesson 40: Dividing by Tenths
Lesson 41: Dividing by Hundredths
Lesson 42: Dividing by Decimals
Lesson 43: Assessment Review 1
Lesson 44: Review Games
Lesson 45: Assessment 1
Lesson 46: 'Octopus Multiplying'
Lesson 47: Short Division to Long Division
Lesson 48: Trial Quotients in Long Division
Lesson 49: Enrichment Expanding Short Division
Lesson 50: Checking Division
Lesson 51: Remainder Forms after Dividing
Lesson 52: Long Division Problems
Lesson 53: More Long Division Problems
Lesson 54: Review and Games 3
Lesson 55: Rectangular Area Problems
Lesson 56: Square Patterns
Lesson 57: More Square Patterns
Lesson 58: Square Roots
Lesson 59: Square Root Problems
Lesson 60: Squares on Right Triangles

Fifth Grade Table of Contents

Lesson 61: Area of Tangrams
Lesson 62: Area of Parallelograms
Lesson 63: Review and Games 4
Lesson 64: Review Area on the Geoboard
Lesson 65: Area of Triangles on the Geoboard
Lesson 66: Introducing Formulas
Lesson 67: Area of Triangles
Lesson 68: Triangle Area Problems
Lesson 69: Applying Triangle Area
Lesson 70: Area of Trapezoids
Lesson 71: Area Problems
Lesson 72: Review and Games 5
Lesson 73: Introduction to Volume
Lesson 74: Volume of Prisms
Lesson 75: Volume of Geometric Solids
Lesson 76: Volumes in Other Units
Lesson 77: Volume Problems
Lesson 78: Assessment Review 2
Lesson 79: Review Games
Lesson 80: Assessment 2
Lesson 81: Skip Counting with Fractions
Lesson 82: Fraction Skip Counting Practice
Lesson 83: Adding and Subtracting Simple Fractions
Lesson 84: Adding Fractions to Two
Lesson 85: Equivalent Fractions on the Multiplication Table
Lesson 86: Simplifying Fractions
Lesson 87: Simplifying Fractions with Factors
Lesson 88: Equivalent Fractions
Lesson 89: Adding Fractions with Same Denominators
Lesson 90: Subtracting Fractions with Like Denominators

Fifth Grade Table of Contents

Lesson 91: Adding Fractions with Unlike Denominators
Lesson 92: More Adding Fractions
Lesson 93: Subtracting Fractions
Lesson 94: Adding and Subtracting Fractions
Lesson 95: Fraction Problems
Lesson 96: Review and Games 6
Lesson 97: Multiplying Fractions and Whole Numbers
Lesson 98: Fraction of a Fraction
Lesson 99: Multiplying Proper Fractions
Lesson 100: More Multiplying Proper Fractions
Lesson 101: Multiplying Mixed Numbers
Lesson 102: Canceling
Lesson 103: Solving Fraction Problems
Lesson 104: Review and Games 7
Lesson 105: Dividing Fractions on a Fraction Chart
Lesson 106: Dividing Fractions with Algorithm \#1
Lesson 107: One Divided by a Fraction
Lesson 108: Whole Numbers Divided by a Fraction
Lesson 109: Dividing Fractions with Algorithm \#2
Lesson 110: Comparing Fraction Division Methods
Lesson 111: Fraction Word Problems
Lesson 112: Review and Games 8
Lesson 113: Percentages
Lesson 114: Percentage Word Problems
Lesson 115: More Percentage Word Problems
Lesson 116: Combinations
Lesson 117: More Combinations
Lesson 118: Introducing Probability
Lesson 119: Probability with Spinners
Lesson 120: Probability with Dice

Fifth Grade Table of Contents

Lesson 121: Review and Games 9
Lesson 122: Analyzing Patterns
Lesson 123: Finding Cities on a Map
Lesson 124: Introducing Coordinate Systems
Lesson 125: Negative Coordinates
Lesson 126: Cartesian Coordinate System
Lesson 127: Graphing Equations
Lesson 128: Making Equations on the Math Balance
Lesson 129: Solving for Unknowns on the Math Balance
Lesson 130: Review and Games 10
Lesson 131: Converting Units within the SI System
Lesson 132: Converting Units within the US System
Lesson 133: Converting Area and Volume Units
Lesson 134: Converting between Systems
Lesson 135: Converting Compound Units
Lesson 136: Converting Rates
Lesson 137: Enrichment Converting Capacity Units
Lesson 138: Enrichment Converting Mass Units
Lesson 139: Review and Games 11
Lesson 140: Review Drawing Horizontal Lines
Lesson 141: Review Drawing Lines with the Triangles
Lesson 142: Classifying Quadrilaterals
Lesson 143: Scaling a Figure
Lesson 144: Drawing a Regular Polygon in a Circle
Lesson 145: Drawing Inscribed Circles
Lesson 146: Drawing Inscribed Squares
Lesson 147: Arithmetic Review
Lesson 148: Arithmetic Games
Lesson 149: Geometry and Measurement Review
Lesson 150: Final Assessment

Lesson 75: Volume of Geometric Solids

OBJECTIVES:

1. To find the volumes of some of the geometric solids
2. To find the volume of a more complicated figure

MATERIALS:

1. Worksheet 63, Volume of Geometric Solids
2. Geometric solids, 1 set for every 3-4 children
3. 4-in-1 rulers
4. Casio SL-450S calculators

ACTIVITIES FOR TEACHING:

Warm-up. Distribute the worksheets to the children. Tell them to do just the warm-up problems. Solutions are:

45.67	76.540	76.54	17.8
+76.54	-4.567	$\times 4.5$	$4 . 3 \longdiv { 7 6 . 5 4 }$
122.21	71.973	38270	
		$\underline{306160}$	

Worksheet 63. Distribute the geometric solids, 4-in-1 rulers, and calculators.
Tell the children that in the previous lesson they found some volumes made with geometry panels. In this lesson they will find the volumes of eight of the geometric solids.
Volume of the cube. Tell them to find the cube and to measure it in centimeters. [Each side is 5 cm .] Ask: How do you find the area of the base? [5 $\times 5$] Tell them to write 5×5 in the second column of the table on their worksheets. See the figure on the next page.

Ask: What is the height? [5] Tell them to write that in the third column of the table. Ask: How do you find the volume? [multiply the base times the height] Tell them to find the volume and write it in the fourth column. [125 cm^{3}] Remind them to include the units.
Volume of the square prism. Tell the children to find the square prism, then to measure and record the measurements. [base: 2.5×2.5 and height: 7.5] Tell them to use their calculator to get the volume. [46.875] Ask: What do the instructions say about rounding? [to the nearest tenth] So, what do you write down for the volume? [$46.9 \mathrm{~cm}^{3}$]

Volume of the rectangular prism. Tell the children to calculate the volume of the rectangular prism in the table. Tell them compare with a neighbor. The solution is shown on the next page.
Remaining solids. Ask: why do you think the table has the bases given to you? [because we haven't learned how to calculate these yet] Tell them to complete the table.

ACTIVITIES FOR TEACHING CONTINUED:
EXPLANATIONS CONTINUED:

	Base (B)	Height (H)	Volume (V)
Cube	5×5	5	$125 \mathrm{~cm}^{3}$
Square prism	2.5×2.5	7.5	$46.9 \mathrm{~cm}^{3}$
Rectangular prism	3×3.6	4.5	48.6 cm ${ }^{3}$
Triangular prism	$\frac{1}{2} \times 2.5 \times 2.1$	7.5	19.7 cm ${ }^{3}$
Hexagonal prism	$5.2 \mathrm{~cm}^{2}$	7.5	$39 \mathrm{~cm}^{3}$
Octagonal prism	$5.9 \mathrm{~cm}^{2}$	7.5	44.3 cm ${ }^{3}$
Small cylinder	$4.7 \mathrm{~cm}^{2}$	7.5	35.3 cm ${ }^{3}$
Large cylinder	$17.6 \mathrm{~cm}^{2}$	5	$88 \mathrm{~cm}^{3}$

Problem 2. Tell the children to complete the second problem. One way is to find the volume of one step, then multiply by 6 for all the steps.

> The height of 1 step is $54.6 \div 3=18.2$
> V for one step $=37.8 \times 37.8 \times 18.2=26004.889 \mathrm{~cm}^{3}$ V for 6 steps $=26004.889 \times 6=156,000 \mathrm{~cm}^{3}$

Another way is to realize that the first and second steps equals the third step. So find volume of third step and double it.

$$
\begin{aligned}
& V \text { of third step }=37.8 \times 37.8 \times 54.6=78014.664 \mathrm{~cm}^{3} \\
& V \text { for } 6 \text { steps }=78014.664 \times 2=156,029 \mathrm{~cm}^{3} \\
& V \text { for } 6 \text { steps }=156,000 \mathrm{~cm}^{3}
\end{aligned}
$$

In conclusion. Ask: How do you find the volume of a box? [Multiply the area of the base by the height.] Does it matter which part of the box is the base? [no]

Measurements may vary.

If there is additional time following this lesson, play Slower Multiplication Card Speed game, found in Math Card Games book, P30.
\qquad

Warm-Up

Date: \qquad

Do the calculations.
$45.67+76.54$
$76.54-4.567$
76.54×4.5
$76.54 \div 4.3$

1. Find the volume of the geometric solids listed below, using a calculator. Measure to the nearest tenth of a centimeter. Round the volumes to the nearest tenth of a cubic centimeter.

	Base (B)	Height (H)	Volume (V)
Cube			
Square prism			
Rectangular prism			
Triangular prism			
Hexagonal prism	$5.2 \mathrm{~cm}^{2}$		
Octagonal prism	$5.9 \mathrm{~cm}^{2}$		
Small cylinder	$4.7 \mathrm{~cm}^{2}$		
Large cylinder	$17.6 \mathrm{~cm}^{2}$		

2. Find the volume of the group of identical square steps. Round the volume to the nearest thousands of cubic centimeters.

Lesson 85: Equivalent Fractions on Multiplication Table

OBJECTIVES:

1. To use the multiplication table to simplify fractions
2. To practice simplifying fractions

MATERIALS:

1. Fraction charts
2. Worksheet 68, Multiplication Table
3. Math Card Games book, F23.1

ACTIVITIES FOR TEACHING:

Warm-up. Ask: Two thirds plus what equals one? [one third] Two thirds plus what equals two? [four thirds] Nine eighths minus what equals one? [one eighth]
Fractions on the multiplication table. Distribute the fraction charts. Have the children refer to Worksheet 68, Multiplication Table from the previous lesson. Tell them that the multiplication table can be used for simplifying fractions.
Tell them to look at their fraction chart and name the fractions that are equal to one half. $\left[\frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \frac{4}{8}, \frac{5}{10}\right]$
Now tell the children to look on their multiplication table and find a 1 and a 2 in the same column. This represents $\frac{1}{2}$. See the right figure below.

The fraction chart.

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100

Showing one half on the multiplication table.

Ask: Can you find two fourths? Touch the 2 and 4 cells with your index finger and thumb. See left figure below.

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20

Showing two fourths.

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20

Showing three sixths.

Continue with three sixths. See the right figure above.
Tell them to keep going to the tenths. See figures below.

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20

Showing four eighths.

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20

Showing five tenths.

A Multiplication Table can also be found in Appendix p. 2.

Tell them to name and touch more fractions in the top two rows that are equivalent to one half. See below.

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20

More fractions equivalent to one half.
Next tell them to use the multiplication table to find three fifths and some equivalent fractions. See below.

3	6	9	12
4	8	12	16
5	10	15	20

Showing equivalent fractions for three fifths.
Simplifying fractions. Tell the children that they can also use the multiplication table to simplify fractions. It is just the opposite. Say: To simplify $\frac{3}{9}$, first find a column with both 3 and 9. [3s column] Then slide all the way to the left. Ask: What does $\frac{3}{9}$ simplify to? $\left[\frac{1}{3}\right]$ See below.

1	2	3	4	5
2	4	6	8	10
3	6	9	12	15
4	8	12	16	20

Simplifying three ninths to one third.
Repeat for $\frac{12}{16}$. Ask: What column has both 12 and 16? [4s column] Then slide all the way to the left. Ask: What does $\frac{12}{16}$ simplify to? $\left[\frac{3}{4}\right]$ See the two left figures below.

1	2	3	4
2	4	6	8
3	6	9	12
4	8	12	16

1	2	3	4
2	4	6	8
3	6	9	12
4	8	12	16

Simplifying twelve sixteenths to three fourths.

1	2
2	4
3	6
4	8
5	10
6	12
7	14
8	16

1	2
2	4
3	6
3	6
4	8
5	10
6	12
7	14
8	16

Ask: Supposing you had used the 2 s column for the 12 and 16 , what would it simplify to? $\left[\frac{6}{8}\right]$ Say: Since $\frac{6}{8}$ is not simplified, put it into the 2 s column again, to be simplified to $\frac{3}{4}$. See the two right figures above.

Simplifying with the Multiplication Table game.

Play the Simplifying with the Multiplication Table game, found in Math Card Games book, F23.1.
In conclusion. Ask: If two fractions are equivalent, what do we call the fraction with the lower numbers? [simplified] What does 10 twentieths simplify to? [one half] What does 20 fortieths simplify to? [one half]

Both the numerator and denominator of the fraction must be in the same column, but they need not be adjacent.

Some children may benefit from seeing these fractions on the fraction chart.
\qquad
Date: \qquad
Fill in the multiplication table as instructed in the lesson.

Multiplication Table

1	2	3	4	5	6	7	8	9	10
2									
3									
4									
5									
6									
7									
8									
9									
10									

Lesson 122: Analyzing Patterns

OBJECTIVES:

1. To generate data from a mathematical relationship
2. To graph the patterns
3. To analyze the patterns

MATERIALS:

1. Warm Up Practice 14
2. Worksheet 103, Analyzing Patterns
3. 4-in-1 rulers or other straightedges

ACTIVITIES FOR TEACHING:
 EXPLANATIONS:

Warm-up. Distribute the warm-up practice sheets. Tell the children to complete the second section. Solutions are on the right.
Worksheet 103. Distribute the worksheets and straightedges. Tell the children that today's lesson is about plotting relationships on a graph.
Problems 1 and 2. Tell the children to complete the first two problems on the worksheet.

1. Ari plays three math card games every week. Jordan plays six math games every week and Cy plays two. Fill in the table to represent the number of games that they played.
The completed table is shown below.

	Total Number of Math Games Played		
Weeks	Ari	Jordan	Cy
0	0	0	0
1	3	6	2
2	6	12	4
3	9	18	6
4	12	24	8
5	15	30	10
6	18	36	12

2. How much did you add to each week's sum for:

Ari 3 Jordan 6
Cy 2
Problem 3. Tell the children to complete the third problem, plotting the points and connecting them. The completed graphs are shown on the next page.
Problem 4. Tell them to answer the questions. The solutions are shown on the next page.

What is the shape of the three graphs? straight lines
At Week 2, Jordan has played how many times more games than Ari? two times more
At each week, Ari has played what fraction of the number of games that Jordan has played? $\frac{1}{2}$
At each week, Cy has played what fraction of the number of games that Jordan has played? $\frac{1}{3}$
At what week has Jordan played 12 games? 2
At what week has Ari played 12 games? 4
At what week has Cy played 12 games? 6
In conclusion. Ask: Which makes it easier to see data, tables or graphs? [Answers may vary.]

If time remains, play ??? game found in Math Card Games book, S10 or S11.

If there is additional time following this lesson, play the One Hundred Percent game, found in Math Card Games book, F50.
5.OA.B. 3
\qquad

1. Ari plays three math card games every week. Jordan plays six math games every week and Cy plays two. Fill in the table to represent the number of games that they played.
2. How much did you add to each week's sum for:

Ari \qquad Jordan \qquad
Cy \qquad
Date:

	Total Number of Math Games Played		
Weeks	Ari	Jordan	Cy
0	0		
1	3		
2	6		
3			
4			
5			
6			

3. Label the graph with numbers and titles. Along the bottom, write the number of weeks from 0 to 6 . Along the left side, write the number of games played.
Then plot the total number of games each person played from the table above. Connect the points for each player and label with the player's name.
4. What is the shape of the three graphs?

At Week 2, Jordan has played how many times more games than Ari?

At each week, Ari has played what fraction of the number of games that Jordan has played? \qquad
At each week, Cy has played what fraction of the number of games that Jordan has played? \qquad
At what week has Jordan played 12 games? \qquad
At what week has Ari played 12 games?

At what week has Cy played 12 games?

Week

Lesson 129: Solving for Unknowns on the Math Balance

OBJECTIVES:

1. To understand that the two sides of an equation are equal
2. To physically solve for an unknown in an equation using the math balance

MATERIALS:

1. Math Balances, one for every 2 to 4 children
2. Worksheet 110, Solving for Unknowns on the Math Balance

ACTIVITIES FOR TEACHING: EXPLANATIONS:

Warm-up. Ask: What is the most important property of an equation? [The two sides are equal.] What does the word equation means? [equal] If you add a weight on the 4-peg, what must be done to the other side to make it balance? [add a weight on the 4-peg] What is a second way you could do this? [add two weights to the 2-peg]
Mystery 1. Tell the children that today's lesson is about finding a mystery number on the math balance.
Set a math balance where the children can see only the front. Place two weights on the right side, one at 2 and one at 4 . Also place two weights on the back side at the left. Do not tell them how many weights are on the 3 . See the left figure below.

Say: We want to find out how many weights are on the 3. Ask: If you replace the weights at 2 and 4 with one weight, where would you put it? [at the 6] See the right figure above.

Ask: Now can you tell the number of weights at 3 ?
[$6 \div 3=2$] Show them the two weights from the back of the left 3-peg.
Say: Let's write the equations from each step. We will use an x for the mystery number. If necessary, repeat the math balance activity while writing the equations.

$$
\begin{aligned}
3 x & =2+4 \\
3 x & =6 \\
x & =2
\end{aligned}
$$

Mystery 2. Put weights at the 3,4 , and 10 on the right side of the math balance. On the left side put a weight at the 2-peg and three weights behind 5-peg. Again, do not let the children see the number of weights on the 5-peg. See the figure on the next page.

Ask: What is the equation? Write it together:

$$
5 x+2=3+4+10
$$

Ask: How can we remove the weight at 2 and still stay in balance? [Remove the 2 from the left side. Remove 2 on the right side by subtracting 2 from 3, resulting in moving the weight on the 3-peg to the 1-peg.] See the left figure below.

Ask: What is the next equation? Write it together:

$$
5 x=1+4+10
$$

Ask: What is the next step? [Combine the weights on the right side.] See the figure above on the right. The equations are:

$$
\begin{aligned}
5 x & =15 \\
x & =3
\end{aligned}
$$

Worksheet 110, Problem 1. Distribute the worksheets and math balances. Tell the children to read the instructions on the worksheet. Ask: How can you use your math balance to check your answers? [Put weights on according to the figure and the extra weights on the back side according to your answer.] Tell them to complete the worksheet. Solutions are below.
$1.9+2 x=5 \times 3$
$2 x=6$
$x=3$
$3.3 \times(6+4)=5 x+10$
$30=5 x+10$
$20=5 x$
$x=4$

> 2. $6 \times 4+2 x=6+10 \times 2$
> $24+2 x=26$
> $2 x=2$
> $x=1$
> $4.9 \times 2+6 x=2+8 \times 4+10 \times 2$
> $18+6 x=54$
> $6 x=36$
> $x=6$
$5.10 \times 2+5+2 x=10 \times 3$
$25+2 x=30$
$2 x=5$
$x=\frac{5}{2}$
$6.4 \times 4+x(2+1)=1+3 \times(3+5)$
$16+3 x=25$
$3 x=9$
$\boldsymbol{x}=3$

In conclusion. Ask: What do you call two expressions that are equal? [equation] What does it mean when checking an equation if the two sides are not equal? [A mistake was made.]

The children's equations may vary slightly.

If time remains, play either the Negative Corners game or Top and Bottom Corners game found in Math Card Games book, S10 or S11.

This lesson exceeds the Fifth Grade CCSS.
\qquad

Find the mystery number, the number of weights on the back side of the math balance, in each figure. Write out the equations as you solve them.
Use your math balance to check your work. If x is greater than 5 , lay the extra weights across the 5 weights as shown on the right.

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

The answer will be a fraction. It cannot be verified with the math balance.
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

The same number of weights are on both the left 2-peg and the left 1-peg.
\qquad
\qquad
\qquad
\qquad
\qquad

