\qquad

Date: \qquad

1. Play the dice game and record the scores in the table. Record the scores of a second game. Which sum wins most of the time? \qquad Does this game seem fair? \qquad

	Game 1	Game 2
Sums	Scores	Scores
3		
7		
11		
12		

2. Write the sums from adding the two dice in the table here.

Die 1
Why does the special sum of 7 win most of the time? \qquad
Which special sums will most likely lose much of the time?
\qquad
Is this game fair? \qquad
How could you make it fair? \qquad

	1	2	3	4	5	6
1	2	3				
2						
\sim	$\stackrel{\sim}{\circ}$					
3						
4						
5						
6						

3. Using the data from the table above, fill in the number of times a sum occurs. Then calculate the probabilities in fractions and percents. Simplify the fractions. Use a calculator for the percents.

Sums	Number	Probability	
	Times	Fraction	Percent
2	।	$\frac{1}{36}$	2.8%
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
Totals		$\frac{36}{36}=$	

