RightStart ${ }^{\text {TM }}$ Mathematics
 Corrections and Updates for Grade 6 Lessons and Worksheets, second edition

LESSON/WORKSHEET/SOLUTIONS			CHANGE	CORRECTION OR UPDATE
Objectives			10/24/2023	Objectives were added to the Lesson book. See attached PDF.
Lesson 9			10/09/2018	Hexagram is a special six-point star based on a hexagon.
	Worksheet 10-3	Solutions 10-3	10/09/2018	Hexagram's definition is a closed six-point figure.
Worksheet 15			10/10/2018	Measurements for the rectangles are off. See attached PDF.
Worksheet 27-1			11/20/2018	Lengths for the lines to measure for Questions 6-10 are off slightly. See attached PDF.
Worksheet 28			11/20/2018	Measurements of the rectangle and centimeter lines are off slightly. See attached PDF.
Solutions 32			12/17/2019	The second equation for Problem 1B should be $4 \times 4-1=15$, not $4 \times 4=16$. The second equation for Problem 1C should be $5 \times 5-1=24$, not $5 \times 5=25$.
Worksheet 33-2 Solutions 33-2			01/03/2019	Question 14 answer is Worksheet 32, not Worksheet 31 . Question 15 has been added. See attached PDF.
Lesson 35			01/03/2019	The wording for the paragraph under Worksheet 35-1 has changed. It now reads, "This worksheet will have you measuring in hundredths. Your ruler only has markings for tenths, so you will be estimating the hundredths measurement. Use your best judgement to make your estimate. Complete the worksheet now."
Worksheet 35-1			11/20/2018	Question 4 gives the wrong width measurement. It should be 2.493, not 2.927. See attached PDF.
Solutions 35-1			01/03/2019	The second calculation in Problem 1 should be $A=2 \times 1=2$ $\mathrm{in}^{2}, \operatorname{not} A=3 \times 1=3 \mathrm{in}^{2}$.
Lesson 37			01/03/2019	The list of materials needs to include the Casio Calculator fx 300MS.
Lesson 38			11/19/2018	In the first paragraph and the second to last paragrah, the worksheet referenced should be Worksheet 36, not 34 and 35 .
Worksheet 39-1		Solutions 39-1	03/27/2019	Changed some of the matching terms and Questions 10 and 11. See attached PDFs.
		Solutions 39-3	01/03/2019	Question 25 measurements should be 38 mm , not 39, and 48 mm , not 49 . Area calculates to $1824 \mathrm{~mm}^{2}$, not $1911 \mathrm{~mm}^{2}$.
Solutions 39-4			01/03/2019	Question 31-33 measurement should be 74 mm , not 73. Area calculates to $4921 \mathrm{~mm}^{2}$, not $4854.5 \mathrm{~mm}^{2}$.
	Worksheet 40-1	Solutions 40-1	08/01/2021	In Question 14, the figure is missing the marks indicating the two halves of the base of the triangle are the same. See attached pdf.
	Worksheet 40-1	Solutions 40-1	11/07/2022	Question 14, choice "a" has been changed to perpendicular, not line of symmetry. Answer is still circled. See attached pdf.

		Solutions 40-3	11/10/2022	Question 31 should have 4 of the 6 triangles of the hexagon shaded as shown here, not 5 triangles shaded.
		Solutions 41-3	01/03/2019	Question 32 measurements should be 52 mm , not $53,33 \mathrm{~mm}$, not 32 , and 29 mm , not 28 . Perimeter calculates to 230 mm , not 229 mm . Question 34 measurements should be 2.0 in., not 2.1. Perimeter calculates to 7.3 cm , not 7.4 cm .
Lesson 44			11/25/2019	In the second heading, third paragraph should read "Using symbols, the area of the hexagon is twice the area..." not octagon.
		Solutions 44-2	11/25/2019	The last solution, \#6, should read " A (rectangle)", not A (square).
	Worksheet 50-2	Solutions 50-2	01/03/2019	An additional question has been added. See attached PDFs.
	Worksheet 50-2		05/20/2020	The solutions, rather than the worksheet itself, was included in the worksheets book and document See attached PDF.
	Worksheet 53-1		01/03/2019	Changed the second definition listed to "quadrilateral with one and only one set of parallel lines", not "parallelogram with one and only one set of parallel lines. See attached PDF.
		Solutions 53-1	01/03/2019	Problem 10 measurement should be 2.4 in., not 2.5. Perimeter calculates to 6.1 in , not 6.2 in and 15.5 cm , not 15.7 cm .
		Solutions 53-2	01/03/2019	Problem 20 measurement should be 6.8 cm , not 6.9. Area calculates to $39.1 \mathrm{~cm}^{2}$, not $39.6 \mathrm{~cm}^{2}$.
Lesson 55			01/03/2019	The game for the day should use a target number of 180.
		Solutions 62	01/22/2019	Question 5 answer should read 3 mm , not 3 cm .
	Worksheet 71-1	Solutions 71-1	04/17/2020	In Problem 2, the size of the television has been updated from 18 " by 14.4 " to 48 " by 41.8 " to make the measurements more realistic. Calculated height changed from $10.8^{\prime \prime}$ to $23.6^{\prime \prime}$. Problem 3 final answer should be 13.92, not 13.97 , which both round to 14.0 .
	Worksheet 74-1	Solutions 74-1	04/17/2020	The definitions for Questions 1-8 had multiple errors. Wording as well as order have changed. See PDFs for the Worksheet as well as the Solutions.
	Worksheet 75-1	Solutions 75-1	04/17/2020	The definition for trapezoid should be a quadrilateral with one and only one set of parallel lines, not parallelogram.
		Solutions 76-2	02/28/2019	Question 21 answer should read 122°, not 58°.
	Worksheet 76-3	Solutions 76-3	04/04/2020	Problem 24 answer "a" should be 9.1, not 10.6 and answer "b" should be 10.6, not 9.1. The two answers were transposed. Question 31 should read "If the area of $\triangle T L G=630 \mathrm{~km}^{2}$, what is the area of $\triangle N G /$? Answer is $1890 \mathrm{~km}^{2}$. Question 32 should read "If line segments $G N+N A=25 \mathrm{~mm}$, what is line segments $T N+N /$?" Answer is 50 mm . There were a few incorrect and/or illogical variations of this question and answer in some of the printings.
Lesson 80			02/08/2022	The 4-in-1 ruler should be listed as a needed material.
	Worksheet 87-1	Solutions 87-1	03/27/2019	Order of the matching terms has been changed. The circles used for Questions 11 and 12 were off and have been corrected. See attached PDF.
	Worksheet 90-2	Solutions 90-2	06/03/2019	Question 9 uses the information from Problem 7, not Problem 6.

		Solutions 98-2	03/25/2020	Problem 7 is missing some of the formula (in printings from April 2019 to March 2020). Second line for the area of the small circle should read: $A(\mathrm{sm})=\pi \times .9^{2}$. Also, $r=1.8 \mathrm{~cm}$ is missing.
		Solutions 99	04/17/2020	The perimeter for Problem 5 should be 41.1 m , not m^{2}.
		Solutions 102	04/04/2020	For Problem 2, the area for the 12" pizzas should be $113.1 \mathrm{in}^{2}$, not $113 \mathrm{in}^{2}$. The area for the 16 " pizza should be $201.1 \mathrm{in}^{2}$, not $201 \mathrm{in}^{2}$. For Problem 7, the total cost for four 16 " pizzas is $\$ 59.96$, not \$59.69.
	Worksheet 103-1	Solutions 103-1	04/10/2019	The third definition should read "formula for the perimeter of a rectange" not "formula for the perimeter of a parallellogram".
	Worksheet 103-2	Solutions 103-2	06/03/2019	The prices Problems 16 have been changed to $\mathrm{MN} 20 \mathrm{~cm}=$ $\$ 12.95, \mathrm{MN} 25 \mathrm{~cm}=\$ 13.55$, ND $20 \mathrm{~cm} \$ 12.53$, and ND 25 cm $\$ 12.95$. See attached PDFs.
		Solutions 104-1	04/04/2020	The answer for Question 8 should be 1:2, not 2:1. The answer for Question 9 should be $4: 1$, not $1: 4$. The second sentence in the second paragraph of the notes should say "The ratio of mdT to $\lg \mathrm{T}, 1: 2$, is different than the ratio of $\lg \mathrm{T}$ to $\mathrm{mdT}, 2: 1$."
	Worksheet 112	Solutions 112	04/28/2023	Problem 3c should read "Translate $\triangle B R G(3.5,1.5)$ and rotate -90° about R'." not R". And directions for 3d should read "Translate \triangle BRG $(8,3)$ and rotate 90° about $\mathrm{R}^{\prime} .{ }^{\prime \prime}$ not $\mathrm{R}^{\prime \prime}$. The solutions for the Problem 3 had mislabels. It should look like this:
Lesson 113			04/22/2020	The figures in the middle of page were labeled wrong. The left figure is reflected vertically in place, not horizontally. The right figure is reflected horizontally in place, not vertically.
Lesson 120			10/10/2018	Under the Pool table game heading, second paragraph, the second sentence should read, "In the second and third figures, the ball is reflected at 30°, then at 60°."
		Solutions 121-2	06/03/2019	The answer for Question 20 Elipse for maximum number of lines of symmetry is ∞, not 2 .
Lesson 122	Worksheet 122-2	Solutions 122-2	05/23/2023	Lessons: Two paragraphs regarding order of rotational symmetry of 1 have been added to the top of page 138 . See attached pdf. Worksheets and Solutions: Question 7-10, the last figure's order of rotation symmetry should be 1 , not none. The coloring of the figure is correct. See attached pdf for the worksheet.
	Worksheet 123-2	Solutions 123-2	05/23/2023	08/01/21: Question 6 asking about the relationship between point symmetry and the order of rotation is now Question 5. A bonus question has been added. See attached pdf. 05/23/23: Solutions have changes in Order of Rotation Symmetry and Degrees of Rotation columns. See attached pdf.
		Solutions 125-2	06/04/2022	Regarding Question 18, a note has been added: Remember from Worksheet 121-2, an ellipse is considered to have two lines of symmetry; however, in the case when an ellipse is a circle, it has infinitely many lines of symmetry.
	Worksheet 126-3	Solutions 126-3	06/05/2020	Question 42 has been changed from "If area $\triangle M E S=97 \mathrm{~km}^{2}$, what is the area of $\Delta S N I$?" to "...what is the area of $\triangle N D A$?" Answer is changed from $194 \mathrm{~km}^{2}$ to $291 \mathrm{~km}^{2}$.
		Solutions 126-6	06/03/2019	The answer for Question 67 should be 19 mm , not 21 mm .

	Solutions 126-8	01/22/2019	The graphic for Question 78 has an error in the top right drawing. It should be as shown here.
	Solutions 126-9	03/22/2020	Question 81 should read "What is the angle of rotation between..." rather tha "What is the angle of reflection between..."
	Solutions 126-10	05/23/2023	Question 92, the last figure of the set, the quadrilateral, should have Order of Rot. Sym. answer of 1 with Degrees of Rotation of 360°, not 0 and 0°.
	Solutions 127-2	06/03/2019	Question 23, identification of a rhombus, should be $A B J F$ and CDEJ. The polygons FKLE and KBCL are not rhombuses because the four sides are not equal.
Worksheet 127-3	Solutions 127-3	06/05/2020	Question 42 has been changed from "If area $\triangle \mathrm{DIS}=82 \mathrm{~cm}^{2}$, what is the area of $\Delta \mathrm{DSM}$?" to "... what is the area of $\triangle \mathrm{DMA}$?" Answer is changed from $164 \mathrm{~cm}^{2}$ to $492 \mathrm{~cm}^{2}$.
	Solutions 127-10	05/23/2023	Question 91, the last figure of the set, the quadrilateral, should have Order of Rot. Sym. answer of 1 with Degrees of Rotation of 360°, not 0 and 0°.

RightStart Mathematics Objectives for Level g

\qquad Year \qquad

Numeration

Solves problems involving whole numbers, fractions, percents, and decimals using the four operations
Interprets and computes problems with exponents and square roots
Rounds and compares whole numbers, fractions, and decimals
Identifies, evaluates and applies advanced patterns, including numerical and frieze patterns

Solving Equations

Writes, reads, evaluates, and solves equations with an unknown (sometimes called a variable)
Applies order of operations to expressions with unknown numbers (sometimes called variables) and exponents
Applies distributive property
Finds and calculates the percent of a part or finds a whole when given a part
Calculates perimeter and area of triangles, quadrilaterals, and polygons, both regular \& irregular

Problem Solving

Solves multi-step real-world and mathematical problems involving rational numbers
Uses reasoning to write and solve real-world problems
Finds multiple ways to solve problems

Ratios

Understands, calculates, and applies ratios to lines, shapes, and related quantities or measurements
Finds missing values in a table by using ratio reasoning
Solves unit rate problems involving measurement and pricing

Measurement

Uses appropriate techniques and tools to accurately measure and draw lines and shapes
Converts between metric and U.S. Customary systems
Identifies and measures angles of existing shapes and draws shapes with specific angle measurements
Understands and applies four properties of angles, i.e., complementary, supplementary, vertical angles, and intersecting parallel lines

Coordinate System

Draws polygons in a coordinate system
Translates, rotates, and reflects shapes in a coordinate system
Uses midpoints to find new coordinates of transformed shapes
Understands and plots positive and negative numbers on a line or grid

Statistics and Probability

Collects and plots data on a number line or coordinate system
Evaluates and summarizes data plotted on a number line or coordinate system

Geometry

Understands and uses formulas to calculate perimeter and area
Learns, applies, and develops informal proofs of the Pythagorean theorem
Identifies and applies translations, reflections, and rotations
Identifies, understands, constructs lines of symmetry and produces shapes with line symmetry and rotational symmetry
Identifies and classifies shapes by number of sides, side lengths, and angle measurements
Demonstrates understanding of four triangle congruence theorems (SSS, SAS, ASA, AAA) by drawing samples of each type
Understands and applies pi, π
Identifies and calculates the center, radius, diameter, circumference, chords, and area of a circle Experiences the joy and beauty of geometry in daily life

Study Skills

Understands and can explain geometric and other mathematical terms
Explores historic and cultural influences in math
Develops independent learning skills
Understands the importance of using available resources for independent learning

Date: \qquad
4. What pattern do you see in the perimeters as the
rectangles become closer to a square?
square $(h=w)$?
3. Finding all the possible measurements of the rectangles should have reminded you of finding
factors. List all the factors of 24.

¿ $(\Omega=y)$ arenbs

1. All these rectangles have the same area of $24 \mathrm{~cm}^{2}$. Use a ruler to find the measurements of the sides.
2. Use a perimeter formula and your calculator to calculate the perimeters in cm . Show your work. Use each of the

Name:
Date: \qquad
$1-4$. Match the following terms with the correct definitions.

Hatching
Numerator
Denominator
Unit fraction
the number of parts in a fraction
shading used by engineers and designers to represent area
the number in a fraction naming the size of the part
fractions with a numerator of 1
5. Create a ruler below dividing it into sixteenths. Using your drawing tools, bisect the horizontal line below. At that point draw a vertical line the height of line m. Then bisect the two halves; draw lines the height of line a. Continue by bisecting the four fourths; draw lines the height of line t. Finally, bisect the eight eighths and draw those lines the height of line h.

Write the fraction for each line. Use your drawing tools to determine the length.
6. \qquad
\qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11-12. Using your drawing tools, draw a horizontal line the length indicated by the fraction. Use the ruler above as your guide.

Name: \qquad
Date: \qquad

1. Before starting, guess which rectangle has the greater area. \qquad
2. Fill the two rectangles below by drawing square centimeters.

3. Which of the two rectangles, A or B, has the greater area? Explain you reasoning below.

Date: \qquad

\bigcirc							\square		
\bigcirc						\square			
∞					\square				\square
N								\square	
\bigcirc									
\square									
∇									
\cdots									
N									
\square	N	\cdots	巾	\square	\bigcirc	N	∞	\bigcirc	\bigcirc

13. See the two numbers in circles next to a square. How are they related to the number in the square?
14. On what worksheet did you work with that relationship?
15. What is the formula?
16. Below is a shortened version of the multiplication table. Find 8. Below is a shortened version of the multiplication table. Find
the area of each square and write the number on the dotted line.

17. What is special about the numbers?
18. Does the results from the previous worksheet apply?
19. Find the difference between each two consecutive numbers that you wrote in the multiplication table above.

ம

3
8. Below is a shortened version of the multiplication table. Find the area of each square and write the number on the dotted line.

9. What is special about the numbers? \qquad They are
squares. \qquad
10. Does the results from the previous worksheet apply? Yes
11. Find the difference between each two consecutive numbers that you wrote in the multiplication table above.
$3,5,7,9,11,13,15,17,19$
12. Below is another version of the multiplication table. Fill in the shaded squares and circles.

1	2	3	4	5	6	7	8	9	10
2	4		8						
3		9		15					
4	8		16		24				
5		15		25		35			
6			24		36		48		
7				35		49		63	
8					48		64		80
9						63		81	
10							80		100

13. See the two numbers in circles next to a square. How are they related to the number in the square?

Equal \& one less than the square.

14. On what worksheet did you work with that relationship?

32
15. What is the formula? $(n+1) \times(n-1)=n^{2}-1$

NOTES: Math is all about patterns. Being aware and able to find patterns will greatly help the student in their math education.

DICTIONARY TERMS: consecutive

Name: \qquad
Date: \qquad

Use these two quadrilaterals for the next four problems. Pay attention to the precision requested with the measurements.

1. Calculate the area of both quadrilaterals. Measure to the nearest whole number using inches.
2. Calculate the area of both quadrilaterals. Measure to the tenths using inches. Round the answers to the tenths.
3. Calculate the area of both quadrilaterals. Measure to the hundredths using inches. Round the answers to the hundredths.
4. Calculate the area of both quadrilaterals. The rectangle measures 3.139 inches wide and 1.817 inches tall. The parallelogram measures 2.493 inches wide and 1.383 inches tall. Round the answers to the thousandths.

Name:
Date: \qquad
$1-7$. Match the following terms with the correct definitions.

Formula

Square inch

Altitude

Area

Square millimeter

Square centimeter
a general principle stated in mathematical symbols
the number of units it takes to cover a surface
a square measuring one inch by one inch used to measure area the line measured to give the height of a figure
a square measuring one centimeter by one centimeter used to measure area
a square measuring one millimeter by one millimeter used to measure area
8. What is the symbol for square centimeters? \qquad
9. What is the symbol for square inches? \qquad
10. What is the formula for calculating area of a rectangle? \qquad
11. What is the formula for calculating perimeter of a rectangle? \qquad
12. What is the area for the shape below? Show your work below.

11 cm

17 cm

10. What is the formula for calculating area of a rectangle? $\quad \begin{aligned} & A=W \times h \text { or } A=w h \\ & \text { 11. What is the formula for calculating perimeter of a rectangle? } \quad \begin{array}{l}P=2(w+h) \text { or } \\ \text { 12. What is the area for the shape below? Show your work below. } \\ 11 \mathrm{~cm}\end{array}\end{aligned} \begin{aligned} & P=2 w+2 h \text { or } \\ & P=W+h+w+h\end{aligned}$
8. What is the symbol for square centimeters? $\quad \mathrm{Cm}^{2}$
9. What is the symbol for square inches? $\mathbf{i n}^{2}$
 Area the line measured to give the height of a figure

Square inch the number of units it takes to cover a surface
Formula _ a general principle stated in mathematical symbols
1-7. Match the following terms with the correct definitions a square meas
measure area
a square measuring one centimeter by one centimeter used to
measure area the added rectangle, the calculation will look like this:
$A=w h$ (whole rectangle) - wh (added rectangle)
$A=17 \times 6-6 \times 3$
$A=12-18$
$A=84 \mathrm{~cm}^{2}$
Or, if the shape is made into a whole rectangle, then subtract
the added rectangle, the calculation will look like this: $A=33+51$
$A=84 \mathrm{~cm}^{2}$
$A=11 \times 3+17 \times 3$
$A=w h$ (upper rectangle) $+w h$ (lower rectangle) 11 cm by 3 ft cm the other 17 cm by 3 cm , the calculation will
look like this: If the shape is divided horizontally into two rectangles, one $A=66+18$
$A=84 \mathrm{~cm}^{2}$
$A=w h$ (left rectangle) $+w h$ (right rectangle)
$A=11 \times 6+6 \times 3$
11 cm by 6 cm and the other 6 cm by 3 cm , the calculation will
look like this: ways. If the shape is divided vertically into two rectangles, one NOTES: Problem 12 can be solved a number of different
\qquad
Date: \qquad
$1-11$. Match the following terms with the correct definitions

Vertex	the distance around a figure
Midpoint	a point where the lines meet in a polygon
Perimeter	the number of units it takes to cover a surface
Area	middle
Numerator	a closed figure with straight line segments
the number of parts in a fraction	
Polygon	a quadrilateral with two sets of parallel lines
Altitude	the height of a figure
Square inch	a square measuring one inch by one inch used to calculate area
Denominator	a shortcut for stating a mathematical relationship using math symbols
Formula	

$12-13$. What is wrong with these pictures?

14. Circle all that describe the line $T B$.
a. Perpendicular
b. Horizontal
c. Altitude of triangle
d. Bisects the triangle

15. Circle all that describe the figure.
a. Parallelogram
b. Rectangle
c. Quadrilateral
d. Trapezoid

Name: \qquad
Date: \qquad
Use the two paper 30-60 triangles and arrange them to make the following figures. Then draw them with your drawing tools below. Make the shortest side of the $30-60$ triangles 2.5 cm or 1 inch. For each figure, measure and write the angle of the vertices.
2. Isosceles triangle that is not equilateral.
3. Rectangle.
6. Quadrilateral that is not a parallelogram.
4-5. Two parallelograms that are neither rectangles nor mirror images of each other.
8. Which figures have the least perimeter?
9. Which figures have the greatest perimeter?

Use the two paper 30-60 triangles and arrange them to make the following figures. Then draw them with your drawing tools below. Make the shortest side of the $30-60$ triangles 2.5 cm or 1 inch . For each figure, measure and write the angle of the vertices.

1. Equilateral triangle.

2. Isosceles triangle that is not equilateral.

3. Rectangle.

4-5. Two parallelograms that are neither rectangles nor mirror images of each other.

6. Quadrilateral that is not a parallelogram.

[ORIENTATIONS WILL VARY.]
7. Which figure has the greatest area? all the same
8. Which figures have the least perimeter? rectangle, quadrilateral
9. Which figures have the greatest perimeter? isosceles triangle, parallelogram with shortest sides of the triangle touching

NOTES: Some students may struggle creating the figures with their paper triangles. Help them realize that they can flip their triangles over as well as rotate the triangles. Once the figure is discovered with the paper triangles, drawing it is made easier.

Check that the shortest side of each 30-60 triangle drawn is 2.5 cm or 1 inch . One student, Draeke, chose to write " 2.5 cm " on his paper triangles to help with the construction of the figures on the worksheet.
DICTIONARY TERMS: goniometer

Name: \qquad
Date: \qquad
$1-8$. Match the following words with the correct definitions.

Straightedge

Octagon
Trapezoid
Quadrilateral
Hexagon
Distributive Property
Parallelogram
Isosceles
shape with four sides
quadrilateral with one and only one set of parallel lines
eight sided polygon
tool for drawing a straight line
polygon with six sides
quadrilateral with two sets of parallel lines
two equal sides
when multiplying or dividing some numbers all by the same number, you can add the numbers first and multiply the total
9. How many centimeters are in 1 inch? \qquad
10. Find the perimeter of the triangle below to the nearest tenth of an inch.

11. Calculate the perimeter of the same triangle in centimeters using the calculator. $P=$ \qquad
Use letters to identify the following shapes.
12. Two rhombuses: \qquad

13. Three rectangles: \qquad
14. Four trapezoids: \qquad
15. Six equilateral triangles: \qquad
16. Four isosceles triangles: \qquad
17. Twelve right triangles: \qquad

Name: \qquad
Date: \qquad

1-8. Match the following terms with the correct definitions

Oblique
Legs

Perfect square

Hypotenuse
Pythagorean theorem
Proof

Square root
the side opposite the right angle of a triangle
a line that is not parallel or perpendicular
the two sides of a triangle opposite the hypotenuse
when the square root of a number is a whole number
a set of logical reasons for learning if a statement is true
a number multiplied by itself gives the quantity
the special relationship between the squares of the sides of a right triangle
9. In the triangle on the right, how many squares are on side a ? \qquad

How many on side b ? \qquad

How many on both sides? \qquad

How many squares will there be on the hypotenuse? \qquad
10. Draw the squares onto the sides of the triangle on the right using your drawing tools. Measure to the tenths of a cm , then give the answers to the hundredths.

$$
\begin{array}{ll}
a=\ldots & a^{2}= \\
b= & b^{2}= \\
c=\underline{2.884 \mathrm{~cm}} & c^{2}= \\
&
\end{array}
$$

11. Does $c^{2}=a^{2}+b^{2}$? \qquad
NOTES: Make sure the student is understanding the difference between the measurements a, b, and c and the square of the numbers, a^{2}, b^{2}, and c^{2}.

9. In the triangle on the right, how many squares
 are on side a ? $\quad 9$
 How many on side b ? $\quad 16$
 How many on both sides? $\quad 25$
 How many squares will there be on the hypotenuse? $\quad 25$

10. Draw the squares onto the sides of the triangle on the
right using your drawing tools. Measure to the tenths
right using your drawing tools. Measure to the then
of a cm, then give the answers to the hundredths.

11. Does $c^{2}=a^{2}+b^{2} ?$ yes

Name: \qquad
Date: \qquad
$1-10$. Match the following terms with the correct definitions

Circumference

Inscribed polygon

Tangent

Internally tangent circles
Line

Diameter

Pi

Circumscribed polygon

Radius

Point
when one circle is inside the other and they are tangent at the same point
the distance around a circle
when all of the vertices of a polygon lie on a circle the exact point where a line segment touches a circle
a line measuring across the middle of a circle
the ratio of the circumference to the diameter of a circle
a polygon drawn around a circle so that each of its sides is tangent to a circle
a path made by points that extends forever
an exact place, with no width, depth or height
a line segment with one end at the center and the other on the circle
11. Using your drawing tools, draw an 8 sided inscribed regular polygon.
12. Using your drawing tools, draw an 8 sided circumscribed regular polygon.

13-14. For each polygon, measure the length of a side in millimeters. Find the perimeter. Calculate the ratio of P, the perimeter of the polygon, to D, the diameter of the circle. Complete the chart below.

Number of Sides	Length, Side of Polygon in mm	\boldsymbol{P} (perimeter) of Polygon in mm	\boldsymbol{D} (diameter) of Circle in mm	Ratio of \boldsymbol{P} to D (hundredths)
8 Inscribed				
8 Circumscribed				

NOTES: On Problems 13 and 14, if needed remind the
student that the ratio of P, perimeter, to D, diameter, is found student that the ratio of P, perimeter, to D, diameter, is found
by dividing the perimeter by the diameter, $120 \div 40$ and $128 \div 40$. If the student's measurements vary, check that their ratio is accurate.
If the student uses tickmarks, rather than line segments as shown in Problems 11 and 12, that is acceptable.

Name: \qquad
Date: \qquad
12. Draw a special square using the radius of this circle as one side. Find the perimeter and area of the square and then find the circumference and area of the circle.

13. Find the radius of a circle that has twice the circumference of the circle below. Draw the circle.
14. Find the radius of a circle that has twice the area of the circle below. Draw the circle.

\times

\times
15. The Vikings had a favorite snack called lefsa. It is a soft tortilla made with potatoes, flour, butter, and cream. Find the area to the nearest tenth of a square cm for each size of lefsa in Minnesota and North Dakota. Fill in the chart.
16. Find the price per square centimeter in tenths of a cent for each piece of lefsa.

Lefsa in Minnesota		
Size	20 cm	25 cm
Price	$\$ 12.95$	$\$ 13.55$
Area		
Price $/ \mathrm{cm}^{2}$		

Lefsa in North Dakota		
Size	20 cm	25 cm
Price	$\$ 12.53$	$\$ 12.95$
Area		
Price $/ \mathrm{cm}^{2}$		

	$\underset{\sim}{8}$	$$	$\underset{N}{N}$	
$\begin{aligned} & \text { if } \\ & i \\ & -1 \\ & -2 \end{aligned}$	$\begin{aligned} & \omega \\ & \boldsymbol{H} \\ & \text { if } \\ & \dot{N} \end{aligned}$		$\begin{aligned} & \text { O } \\ & \text { O } \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \vdots \\ & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$
$\begin{aligned} & N \\ & \infty \\ & \infty \\ & -2 \end{aligned}$	$\begin{aligned} & \text { is } \\ & 6 \\ & 0 \\ & 6 \\ & 6 \end{aligned}$	$$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~B} \end{aligned}$	~

15. The Vikings had a favorite snack called lefsa. It is a soft tortilla made with
potatoes, flour, butter, and cream. Find the area to the nearest tenth of a square
16. Find the price per square centimeter in tenths of a cent for each piece of lefsa.
$r(l g)=\frac{16.4}{2 \pi} \approx 2.6 \mathrm{~cm}$

circumference of the circle below. Draw the circle.

square and then find the circumference and area of the circle
17. Draw a special square using the radius of this circle as one side. Find the perimeter and area of the practical nor likely. diameter of the snack, using a radius measurement is not is the diameter. Although it does not specifically say it is the NOTES: On Question 16, the sizes given, 20 cm and 25 cm ,

Lesson 122: Rotational Symmetry

OBJECTIVES:

1. To learn the terms rotational symmetry, order of rotation symmetry, and point symmetry
2. To apply rotational symmetry and point symmetry

MATERIALS:

1. Math Dictionary
2. Worksheet 122, Rotational Symmetry
3. Tangrams
4. Colored pencils, optional
5. Math Card Games book

ACTIVITIES:

Rotational symmetry. Just as line symmetry refers to a line of symmetry within an object, rotational symmetry refers to rotation of an object. If a figure can be rotated and looks the same as before the rotation, it has rotational symmetry.
In the left figure below, the abacus has rotational symmetry; you can turn it 180° and it will look exactly as the original abacus.

In the center figure above, an image of the design (a logo) can be rotated 30° and still fit exactly on the original. Actually, it can be rotated for every multiple of 30° up to 360°, such as $30^{\circ}, 60^{\circ}, 90^{\circ}$, and so on, for a total of 12 times because $360 \div 30=12$. When counting the number of rotations, we only go around once so do not count anything past 360°. The number of times it can be rotated is the order of rotation symmetry.
The car wheel above on the right can be rotated $72^{\circ}(360 \div 5)$ and four more multiples of 72 and still look like the original.
The figures below show the five counterclockwise rotations. Notice the shadow. It will help you keep track as you observe the rotations. What is the order of rotation symmetry? Answer is below.

The point of rotation is usually easy to find: it's the center of the figure.

ACTIVITIES:
All objects have an order of rotational symmetry of 1 or more. Can you think why every object has at least an order of rotation of 1 ? Hint: what is $360 \div 360$? It's 1 !
So, in other words, you can always rotate an object completely around, 360°, and it will look the same. Therefore, everything has an order of rotation of 1 and sometimes more.
Point symmetry. A special case of rotational symmetry is point symmetry. An easy way to check for point symmetry is to rotate it 180°. If it looks the same, upside down as right side up, it has point symmetry.
To understand why it's called point symmetry, follow these steps. First construct this figure with your tangrams on top of a sheet of paper. Then rotate the paper 180° to see that the tangram design has point symmetry.

Next consider what happens if you connect the corresponding points. As you can see in the figure above on the right, the lines intersect at the center. The center also bisects each connecting line. It can be thought of as though each point is reflected through the center point. That's point symmetry.
Worksheet 122. The worksheet is a collection of problems applying symmetries.
Symmetry in logos, optional. Collect a dozen or so logos from magazines, the internet, or products. Analyze them for symmetry.
Today's game. Play your choice of math card game from the Math Card Games book.

EXTRAS:

Watermelons also exhibit symmetry.
\qquad

Date:

\qquad

A

B

C

D

E

F

1. Which of the figures above have line symmetry? \qquad

2. Which of the figures have rotational symmetry? Give the order of rotation symmetry.
3. Which of the figures have point symmetry? \qquad
4. List the seven capital letters that have rotational symmetry.
5. List the three digits that have rotational symmetry.

NOW NO SWIMS
 ON MON

6. What did the diver read on the sign while traveling headfirst toward the water?

7-10. Color the squares in the figures below to show the order of rotation symmetry given.

11. Color the shaded part of the logo on the right. Then color the remaining part of the logo so it has rotational symmetry. What is the order of rotation symmetry? \qquad

\qquad
Date: \qquad
4. Consider the symmetry of each figure and fill in the table below.

Shape	Line Symmetry?	Point Symmetry?	Rotational Symmetry?	Order of Rotation Symmetry	Degrees of Rotation
\square					
C					
S					
E					
S					
T					
F					

5. What is the relationship between point symmetry and the order of rotation? \qquad

BONUS: Can you have rotational symmetry without line symmetry and point symmetry? \qquad
NOTES: Approaching this table systematically may be beneficial for some students. Considering line symmetry for all figures, then point symmetry, then rotational symmetry, etc, helps keep each definition straight.
The star is not symmetrical because of the shading. An object having rotational symmetry with an order of 1
 rotated by $360 \div 1$, which is 360 degrees. In other words, the order of rotation symmetry of 1 happens with objects that have no symmetry less than 2 . Rotational symmetry for these objects is trivial. Therefore, the simplest possible rotational
Question 5 can also reference the order of rotation being a multiple of 2.
For the bonus question, only looking to the chart's information, when neither line symmetry nor point symmetry exist, rotational symmetry does not appear to exist. The second quadrilateral and the letter F both have no line symmetry, no point symmetry, as well as no rotational symmetry.
 shown here. It has rotational symmetry without
line symmetry and point symmetry. consider figure B from Worksheet 122 as shown here. It has rotational symmetry without
line symmetry and point symmetry. line symmetry and point symmetry.
DICTIONARY TERMS: heptagon
Joshua Dill from St. Paul, MN,
age 14, wondered about this.
After some work, he shows that
rotational symmetry can exist without point or line symmetry being present.
So the answer to the bonus question is "yes." Additionally, consider figure B from Worksheet 122 as
4. Consider the symmetry of each figure and fill in the table below.
レ

Shape	Line Symmetry?	Point Symmetry?	Rotational Symmetry?	Order of Rotation Symmetry	Degrees of Rotation
\square	no	Yes	Yes	2	180°
\square	no	no	no	1	360°
\square	yes	no	no	1	360°
8	yes	no	yes	5	72^{0}
\square	yes	yes	Yes	2	180°
*	no	Yes	Yes	4	90°
	yes	no	yes	3	120°
906	no	Yes	yes	2	180°
E	yes	no	no	1	360°
S	no	yes	yes	2	180°
T	yes	no	no	1	360°
F	no	no	no	1	360°

 only exists when order of rotation is even.
BONUS: Can you have rotational symmetry without line symmetry and point symmetry? yes

