RIGHTSTART MATHES

by Joan A. Cotter, Ph.D. with Kathleen Cotter Lawler

FOURTH GRADE LESSONS

Second Edition

A_Activities for Learning, Inc.

A special thank you to Maren Ehley and Rebecca Walsh for their work in the final preparation of this manual.

Copyright © 2016, 2024 by Activities for Learning, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission of Activities for Learning, Inc.

The publisher hereby grants permission to reproduce the Worksheets and Appendix for a single teacher's use only.

Printed in the United States of America

www.RightStartMath.com

For more information: info@RightStartMath.com Supplies may be ordered from: www.RightStartMath.com

Activities for Learning, Inc. 321 Hill Street Hazelton, ND 58544-0468 United States of America 888-775-6284 or 701-782-2000 701-782-2007 fax

ISBN 978-1-942943-08-2 April 2024

RIGHTSTARTTM MATHEMATICS OBJECTIVES FOR FOURTH GRADE

Quarter 1 Quarter 2 Quarter 3 Numeration N/A Understands and finds prime numbers N/A Factors numbers Reads, writes, rounds, and compares numbers to the billions **Addition and Subtraction** Adds and subtracts multi-digit numbers in multiple ways **Multiplication and Division** N/A Knows multiplication facts to 10×10 N/A N/A Knows division facts, including remainders N/A Applies commutative, associative, and distributive properties N/A Multiplies multiples of 10, e.g. 80×7 N/A N/A Multiplies multi-digit numbers by a 2-digit number N/A N/A Does short division to divide multi-digit number by a single digit **Problem Solving** Solves two-step problems involving four operations Writes equations to represent story problems Solves division story problems with remainders N/A N/A N/A Solves elapsed time, distance, money, and capacity problems Measurement N/A N/A Understands square units: cm², dm², sq ft, and sq yd N/A N/A Finds perimeter and area in customary and metric units N/A N/A N/A Converts measurements in same system (e.g., g to kg) **Fractions** N/A Adds and subtracts simple fractions and mixed numbers Understands a/b as 1/b multiplied by aN/A Understands $n \frac{a}{h}$ as a whole number plus a fraction N/A N/A Compares and finds equivalences on the fraction chart N/A Multiplies fractions times a whole number **Decimals and Percents** Understands decimals as fractions of tenths or hundredths N/A N/A N/A N/A Converts decimal fractions from tenths to hundredths and back N/A N/A

Adds, subtracts, and compares decimals to two decimal places Understands and uses simple percents

Patterns

Recognizes and continues numeric and geometric patterns Uses algebraic thinking to write a pattern symbolically Solves simple equations

Data

Makes line plots and interprets data

Geometry

Locates lines of symmetry and draws reflections Knows angles 30°, 45°, 60°, 90°, 180°, and 360° Classifies shapes by attributes Constructs equilateral triangle and other shapes

N/A	N/A	N/A	
N/A			
N/A	N/A	N/A	
N/A	N/A	N/A	
N/A	N/A	N/A	
14/14			
N/A	N/A	N/A	

N/A

N/A

Lesson 1	Review Cotter Abacus and Addition Strategies
Lesson 2	Review The Math Balance
Lesson 3	Review Mental Adding
Lesson 4	Review Subtraction Strategies
Lesson 5	Review Trading on Side 2 of the Abacus
Lesson 6	Review Multiplication Strategies
Lesson 7	Review Division Strategies
Lesson 8	Finding Remainders
Lesson 9	Remainders after Dividing by Nine
Lesson 10	Finding Check Numbers
Lesson 11	Using Check Numbers to Check Adding
Lesson 12	Review Adding on Side 2 of the Abacus
Lesson 13	Adding Multi-Digit Numbers
Lesson 14	On to the Millions
Lesson 15	Writing and Reading Large Numbers
Lesson 16	Rounding Large Numbers
Lesson 17	Rounding Activities
Lesson 18	Review and Games 1
Lesson 19	Adding and Subtracting Shortcuts
Lesson 20	Subtracting on Side 2 of the Abacus
Lesson 21	Traditional Subtracting on the Abacus
Lesson 22	Checking Subtraction by Adding Up
Lesson 23	Magic Squares
Lesson 24	Modifying Magic Squares
Lesson 25	Larger Magic Squares
Lesson 26	Terry's Way to Subtract
Lesson 27	Terry's Other Way to Subtract
Lesson 28	Review and Games 2
Lesson 29	Addition and Subtraction Problems
Lesson 30	Number Puzzles & Comparing Expressions
Lesson 31	Partial Products on Side 2 of the Abacus
Lesson 32	Traditional Multiplying on the Abacus
Lesson 33	Traditional Multiplying on Paper
Lesson 34	Multiplication Comparisons
Lesson 35	Assessment Review 1

Lesson 36	Review Games
Lesson 37	Assessment 1
Lesson 38	Review Drawing Horizontal Lines
Lesson 39	Review Drawing Lines with the Triangles
Lesson 40	Review Basic Fractions
Lesson 41	Equivalent Fractions
Lesson 42	Halves of Halves
Lesson 43	Fractions Closest To
Lesson 44	Sketching Fractions
Lesson 45	Fractions Totaling One
Lesson 46	Whole Number Plus a Fraction
Lesson 47	A Fraction of Twelve
Lesson 48	Review and Games 3
Lesson 49	Adding Fractions Informally
Lesson 50	Adding and Subtracting Fractions Informally
Lesson 51	Comparing Fractions
Lesson 52	Comparing Harder Fractions
Lesson 53	Fraction of Sixteen
Lesson 54	Adding Eighths
Lesson 55	Reading Rulers to Eighths
Lesson 56	Adding Mixed Numbers With Eighths
Lesson 57	Review and Games 4
Lesson 58	Multiplying by Tens
Lesson 59	Multiplying by Two Digits
Lesson 60	Factor Pairs
Lesson 61	Prime Numbers
Lesson 62	Sieve of Eratosthenes
Lesson 63	Enrichment Prime Numbers to 1000
Lesson 64	Remainder Problems
Lesson 65	Working With Remainders
Lesson 66	Dividing 4-Digit Numbers on the Abacus
Lesson 67	More Dividing 4-Digit Numbers on the Abacus
Lesson 68	Short Division
Lesson 69	Multivides
Lesson 70	Assessment Review 2

Lesson /1	Review Games
Lesson 72	Assessment 2
Lesson 73	Working with Tenths
Lesson 74	Introducing Hundredths
Lesson 75	Working with Hundredths
Lesson 76	Decimal Fractions on the Cotter Abacus
Lesson 77	Introducing Decimal Points
Lesson 78	Using Decimal Points for Hundredths
Lesson 79	Decimal and Fraction Practice
Lesson 80	Hundredths of a Dollar
Lesson 81	Review and Games 5
Lesson 82	Order of Operations with a Calculator
Lesson 83	Dollars and Cents on a Calculator
Lesson 84	Decimals on a Number Line
Lesson 85	Measuring in Tenths of an Inch and a Mile
Lesson 86	Decimal Parts of a Meter
Lesson 87	Fuel Prices
Lesson 88	Review and Games 6
Lesson 89	Introduction to Percentages
Lesson 90	Percentage of a Rectangle
Lesson 91	Finding Percentages
Lesson 92	Percentages on a Calculator
Lesson 93	Percentages in Geography
Lesson 94	Percentage Problems
Lesson 95	More Percentage Problems
Lesson 96	Fraction Circles
Lesson 97	Percentage Circles
Lesson 98	Percentage and Fractions Totaling One
Lesson 99	Review and Games 7
Lesson 100	Measuring Angles
Lesson 101	Isosceles Triangles
Lesson 102	Classifying Triangles
Lesson 103	Classifying Polygons
Lesson 104	Classifying Angles
Lesson 105	Angles in a Circle

Lesson 106	Angles on a Geoboard
Lesson 107	Regular Polygons on a Geoboard
Lesson 108	Review and Games 8
Lesson 109	Square Units
Lesson 110	Area Problems
Lesson 111	Distance Problems
Lesson 112	Capacity Problems
Lesson 113	Weight Problems
Lesson 114	Time Problems
Lesson 115	Line Plots
Lesson 116	Review and Games 9
Lesson 117	Shapes in an Octagon
Lesson 118	Lines of Symmetry
Lesson 119	Drawing Reflections
Lesson 120	Drawing More Reflections
Lesson 121	Visualizing Cubes
Lesson 122	Isometric Drawings
Lesson 123	Views of an Object
Lesson 124	Views of Pyramids and Cones
Lesson 125	Name the Solids from Views
Lesson 126	Drawing Circle Designs
Lesson 127	Drawing Olympic Rings
Lesson 128	Area on the Geoboard
Lesson 129	Comparing Areas on the Geoboard
Lesson 130	Triangle Areas on the Geoboard
Lesson 131	How Many Squares on the Geoboard
Lesson 132	Midpoints in Triangles
Lesson 133	Midpoints in Quadrilaterals
Lesson 134	Enrichment Mobius Strips
Lesson 135	Whole Number Review
Lesson 136	Whole Number Games
Lesson 137	Fractions, Decimals, and Percents Review
Lesson 138	Fractions and Percentage Games
Lesson 139	Geometry and Measurement Review
Lesson 140	Final Assessment

LESSON 56: ADDING MIXED NUMBERS WITH EIGHTHS

OBJECTIVES:

- 1. To learn the terms *proper fraction* and *improper fraction*
- 2. To practice adding fractions with eighths
- 3. To convert improper eighths to proper eighths

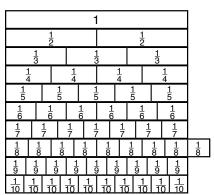
MATERIALS:

1. Fraction charts and fraction pieces

EXPLANATIONS:

- 2. Math Card Games book, F22.1
- 3. Math journals

ACTIVITIES FOR TEACHING:

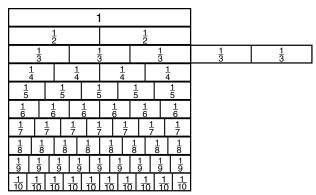

Warm-up. Ask: In the fraction one fifth, what is the denominator? [5] In the fraction one fifth, what number is the numerator? [1] If the denominator and numerator are the same, what does the fraction equal? [1]

Improper fractions. Distribute the fraction charts and fraction pieces.

Write:

 $\frac{9}{8}$

and ask the children to show it with their fraction chart and fraction pieces. [8 eighths plus 1 more eighth] See figure below.



Showing $\frac{9}{8}$ with the fraction chart and pieces.

Write:

<u>5</u>3

and tell them to show it with the fraction materials. See figure below.

Showing $\frac{5}{3}$ with the fraction chart and pieces.

EXPLANATIONS CONTINUED:

Write: $\frac{9}{8} = \frac{5}{3} = \frac{3}{2}$

Ask: Which of these three fractions is less than one? $[\frac{3}{4}]$ How can you tell by looking only at the numerators and denominators? [The numerator is less than the denominator.]

Say: When the numerator is less than the denominator, the fraction is called a *proper fraction*. This name results from hundreds of years ago when people thought a "real" fraction had to be less than one. The word "fraction" comes from the Latin word "frangere" meaning "to break." Two other words from this root word are fracture and fragment. Mathematicians realized fractions were division and often were not less than one. They called fractions equal to or greater than one *improper fractions*.

Write: $\frac{4}{8}$ $\frac{7}{4}$ $\frac{4}{3}$ $\frac{8}{8}$ $\frac{12}{8}$

Ask: Which of these are proper fractions? [only the first and last fractions, $\frac{4}{8}$ and $\frac{1}{6}$]

Ask: How can we rewrite the improper fractions using a whole number plus a fraction? $[1\frac{3}{4},1\frac{1}{3},1,1\frac{4}{8}]$

Preparation for Corners™ with Eighths game.

Explain that the game for the day will be a CornersTM Three game variation. Now each number on the cards will be *eighths*. For example, 3 is $\frac{3}{8}$ and 9 is $\frac{9}{8}$.

Write: $1\frac{3}{8} + \frac{9}{8} =$

and ask the children to add it. Ask several children to explain their work to the class.

One way is: $1\frac{3}{8} + \frac{9}{8} = 1\frac{12}{8} = 2\frac{4}{8}$

Another way is: $1\frac{1}{8}$ $1\frac{3}{8} + \frac{9}{8} = 2\frac{4}{8}$

Give them another example: $2\frac{2}{8}$ $2\frac{5}{8} + \frac{18}{8} = [2\frac{23}{8} = 4\frac{7}{8} \text{ or } 2\frac{5}{8} + \frac{18}{8} = 4\frac{7}{8}]$

Corners™ with Eighths game. Play Corners™ with Eighths game, found in *Math Card Games* book, F22.1. Stress that the fractions in the scoring sums must be proper fractions. Tell them to write the scoring in their math journals.

In conclusion. Ask: What do we call a fraction when the numerator is greater than the denominator? [improper] What is a fraction called when the denominator is greater than the numerator? [proper]

This can be done by referring to the fraction chart. No algorithm is necessary.

The answers need not be in lowest terms.

4.NF.B.3.C

LESSON 59: MULTIPLYING BY TWO DIGITS

OBJECTIVE:

MATERIALS:

1. To develop a procedure for multiplying by two digits

1. Worksheet 37, Multiplying by Two Digits

ACTIVITIES FOR TEACHING:

EXPLANATIONS:

Warm-up. Ask: What is 31×2 ? [62] What is 31×20 ? [620] What is 31×200 ? [6200]

Ask: What is 23×3 ? [69] What is 23×30 ? [690] What is 23×300 ? [6900]

Multiplying by two digits. Write these three problems:

Say: You have been multiplying problems like the first one for several months now. In yesterday's lesson you multiplied numbers with tens like the second problem. Today you will multiply numbers with two digits like the third problem.

Ask: How do you think you could do it? Tell the children to share their thoughts with a neighbor and then ask someone to share with the class. Two solutions are below.

312	312
× 32	× 32
624	9360
9360	624
9984	9984

Worksheet 37. Distribute the worksheets and tell the children to do the first two rows in the left box. The solutions are below.

Then tell them to discuss their answers with a neighbor and the class.

63	63	825	825	825
<u>× 30</u>	<u>× 35</u>	<u>× 6</u>	<u>× 50</u>	<u>× 56</u>
1890	315	4950	41,250	4950
	<u>1890</u>			<u>41250</u>
	2205			46,200
	<u>× 30</u>	× 30 × 35 1890 315 1890	×30 ×35 ×6 1890 315 4950 1890	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

It is acceptable to multiply the leftmost digit first.

EXPLANATIONS CONTINUED:

Repeat for the last two rows in the left box. The solutions are below.

Writing the 'carries.' Write:

$$28 \times 43$$

and multiply the 28×3 part. See below.

$$\begin{array}{r}
 2 \\
 28 \\
 \times 43 \\
 \hline
 84
 \end{array}$$

Continue with multiplying the 28×40 .

$$\begin{array}{r}
3\\2\\28\\\times 43\\\hline
84\\1120\\1204
\end{array}$$

Explain that the carries, the little numbers, can be written in rows above the problem, but many people do not write them at all; they do it mentally.

Worksheet 37. Tell the children to complete the worksheet. The solutions are below.

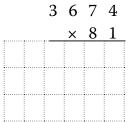
	2927	572	143	81
	<u>× 81</u>	<u>× 64</u>	<u>× 33</u>	<u>× 52</u>
	2927	2288	429	162
	234160	<u>34320</u>	<u>4290</u>	<u>4050</u>
	237,087	36,608	4719	4212
365	365	365	365	365
<u>× 26</u>	<u>× 55</u>	<u>× 10</u>	<u>× 9</u>	<u>× 2</u>
2190	1825	3650	3285	730
<u>7300</u>	<u>18250</u>			
9490	20.075			

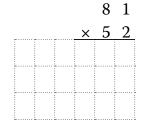
In conclusion. Ask: If you multiply 2 by 50 and then 2 by 3 and add them together, what is the answer? [106, 2×53] If you multiply any number by 50 and then by 3 and add them together, what is the answer? [number $\times 53$]

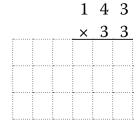
Do not insist that all children write the little ones. Some can do it mentally.

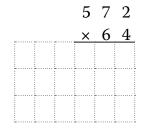
Technically, it is not necessary to write the 0 in the right column of the second line. However, it helps children in their understanding that they are multiplying by 3 tens and not by 3 ones.

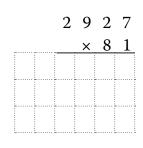
Unfortunately, some students have been taught to write an "x" as the placeholder. This nonstandard use of x has caused those students considerable confusion when they studied algebra.

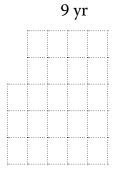

If there is additional time following this lesson, play the Multiples Solitaire game, found in *Math Card Games* book, P19.

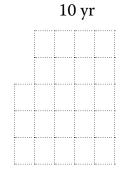

4.NBT.B.5


Name: _____


Date:


1. Find the products by using your previous answers wherever possible.





3. How many days are in the following number of years? Ignore leap years.

		26	yı	•
		•	•	
				: :
	:	:	:	: :
	:	:	:	: :
	:	:	:	: :
	1	1	1	1
	1	1	1	: :
	8	8	8	
	:	:	:	: :
	:	:	:	: :
	:	:	:	: :
	:	:	:	: :
*********	*********	*********	*********	*********
:	:	:	:	: :
1	:	:	:	: :
:	:	:	:	: :
:	:	:	:	: :
1	1	1	1	1
:	:	:	:	: :
:	:	:	:	: :
:	:	:	:	: :
:	:	:	:	: :
:	:	:	:	: :
********	*	*	*	*********
:	:	:	:	: :
:	:	:	:	: :
:	:	:	:	: :
:	:	:	:	: :
1	1	1	1	: :
1	1	1	1	1

LESSON 78: USING DECIMAL POINTS FOR HUNDREDTHS

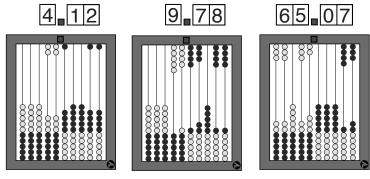
OBJECTIVES:

- 1. To understand decimals as an alternate way of writing tenths and hundredths
- 2. To subtract tenths and hundredths in decimal format

MATERIALS:

- 1. Warm-up Practice 3
- 2. Cotter Abacuses and 10 centimeter cubes
- 3. Place-value cards
- 4. *Math Card Games* book, N43 and F22.2, and Math journals
- 5. Worksheet 51, Using Decimal Points for Hundredths

ACTIVITIES FOR TEACHING:


Warm-up. Distribute the warm-up practice sheets. Tell the children to do the second section on the page. Solutions are on the right.

Writing hundredths as decimals. Distribute the abacuses, centimeter cubes, and place-value cards.

Write: $4\frac{12}{100}$

and ask: How do you think you could write this using a decimal point? Write it: 4.12

Say: We read it as 4 and 12 hundredths. Compose the number with your place-value cards and enter it on your abacus. See the left figure below.

Entering 4.12.

Entering 9.78.

Entering 65.07.

Repeat for nine and 78 hundredths. See the middle figure above.

Repeat for 65 and 7 hundredths. (To get the zero, turn a tens card for example, the 30-card, upside down and cover the 3 with the 7.) See the right figure above. Ask: Why did you need a zero before the 7? [Without it, it would be 65 and 7 tenths.]

Practice. Write and ask them to read the following:

30.72 [30 and 72 hundredths]

72.8 [72 and 8 tenths]

72.08 [72 and 8 hundredths]

9.40 [9 and 40 hundredths]

EXPLANATIONS:

5678 (8)	5678 (8)	5678 (8)
<u>×2</u> (2)	$\times 70$ (7)	$\times 72 (0)$
11 356 (7)	397 460 (2)	11 356
, ,	()	397 460
		408 816 (0)
	213 459 (6)	()
	<u>× 35</u> (8)	
	1 067 295 `	
	<u>6 403 770</u>	
	7 471 065 (3)	

This question encourages the children to think of the big picture and to continue to think intuitively about math.

Do not at this point read 4.12 as "four point one two." This lesson is to help the children understand the relationship between fractions and decimals.

EXPLANATIONS CONTINUED:

Can You Find game. Play this variation of the Can You Find game, found in *Math Card Games* book, N43. Use place-value cards with ones and tens and seven centimeter cubes. Below are the numbers to say. Tell the children to compose the number and set it aside. All the cards will be collected at the end of the game.

- 1. Can you find 90 and 5 tenths?
- 2. Can you find 8 tenths?
- 3. Can you find 60 and 87 hundredths?
- 4. Can you find 50 and 12 hundredths?
- 5. Can you find 24 and 3 tenths?
- 6. Can you find 71 and 36 hundredths?
- 7. Can you find 9 hundredths? (Hint: Turn the 40-card upside down to get a zero.)

Subtracting tenths and hundredths. Write:

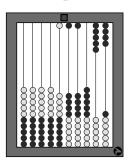
$$\begin{array}{cccc}
4.1 & 2.37 & 3.26 \\
\underline{-.3} & -1.31 & -1.48
\end{array}$$

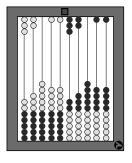
and ask them to find the differences any way they can. [3.8, 1.06, 1.78] They could do it with the abacus or by thinking in terms in tenths and hundredths as fractions.

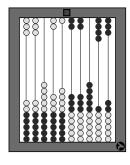
Worksheet 51. Distribute the worksheets to the children and tell them to do the problems. The solutions are below.

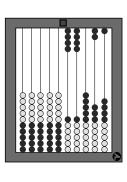
1 <u>29</u> 1.29	52 ₁	5 <u>2</u> 00 52.52	63 47 63.47	,
$\frac{83}{100}$.83	8 ₁₀	7 ₀ 8.07	8 9 8.9	
$ \begin{array}{r} 21.6 \\ -3.5 \\ \hline 18.1 \end{array} $	9.3 - 5.6 3.7	$ \begin{array}{r} 10.0 \\ -8.5 \\ \hline 1.5 \end{array} $	9.1 - 8.3 . 8	
$11.63 \\ - 2.31 \\ \hline 9.32$	$- \frac{9.47}{6.60}$	9.53 - 5.28 4.25	7.41 - 5.53 1.88	
$\begin{array}{r} 5.68 \\ - 2.08 \\ \hline 3.60 \end{array}$	5.15 - 2.90 2.25	8.00 - 1.25 6.75	$\frac{3.40}{-1.25}$ 2.15	

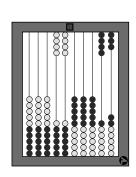
Corners™ with Tenths game. Play this variation of Corners™ with Tenths game found in Math Card Games book, F22.2. Say: Use your math journal to write the scores using decimal points. In this game, all the numbers are considered to be hundredths. A score of 12 is now 12 hundredths, written with a decimal point (.12). Tell them to use their math journals for scoring.

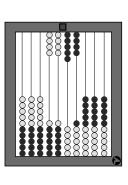

In conclusion. Ask: Which is more, 7 tenths or 7 hundredths? [7 tenths] Which is more, 7 tenths or 70 hundredths? [the same] Which is more, 7 or 7 tenths? [7]


4.NF.C.6


Name: _____


Date:


Write the quantities shown using fractions and decimal points.



Subtract the following.

$$\begin{array}{r} 10.0 \\ - 8.5 \end{array}$$

$$11.63$$
 $- 2.31$

$$3.40$$
 $- 1.25$

Lesson 95: More Percentage Problems

OBJECTIVES:

1. To solve more common problems involving percentages

Tip is \$1.20 + \$0.60 = \$1.80. Total is \$12 + \$1.80 = \$13.80. 4. In some places people pay sales tax on certain things they buy. If the sales tax is 5%, what is the total bill for a

Ten percent of \$4000 is \$400. Half of that is \$200. Total

2. To learn about tipping and sales tax

MATERIALS:

- 1. Warm-up Practice 9
- 2. Worksheet 67, More Percentage Problems
- 3. Math Card Games book, F48

ACTIVITIES FOR TEACHING: EXPLANATIONS: Warm-up. Distribute the warm-up practice sheets. Tell 24 (6) the children to do the second multivide on the page. × 18 (**0**) Solutions are on the right. 192 240 **Worksheet 67.** Distribute the worksheets and ask the 432 (0) children to read and solve the first problem. Then tell <u>× 6</u> (**6**) them to explain it to a neighbor and the class. 2 592 (0) × 35 (**8**) 1. In a certain class 50% of the children are girls. There 12 960 are 12 girls. How many children are in the class? [24 77 760 children] 90 720 (0) $\times 96 \ (6)$ If 50% are girls, then 50% must be boys. The total number 544 320 will be $12 \times 2 = 24$ children. 8 164 800 9) 8 709 120 (0) Repeat for the remaining problems. 8)967 680 (0) 2. The usual tip at a restaurant is 15% of the cost of the 7)120 960 (0) food. Many people figure it out by first finding 10%, 6) 17 280 (0) then finding 5%, which is half of 10%, and adding them 5<u>)2 880</u> (0) together. What is the tip if the food costs \$8.00? [\$1.20] 4<u>) 576</u> (0) 3)144 (0) Ten percent of \$8 is \$0.80. Half of that is \$0.40. Adding 2<u>)48</u> (3) \$0.80 and \$0.40 is \$1.20. 24 3. What is the 15% tip if the food bill is \$12.00? What is the total cost? [\$13.80]

car that cost \$4000? [\$4200]

is \$4000 + \$200 = \$4200 total cost.

same, \$4.50]

5. The original price for a game is \$10.00. In Store A it went on sale at 10% off and then it went on sale again with 50% off of the sale price. In Store B it went on sale at 50% off and then it went on sale again with 10% off of the sale price. Which store has the better price? [the

At Store A, the price after the first reduction is $$10 \times 90\% = 9 . After the second price reduction, it is $$9 \times 50\% = 4.50 .

At Store B, the price after the first reduction is $$10 \times 50\% = 5 . After the second price reduction, it is $$5 \times 90\% = 4.50 .

Percentage War game. Have them play the Percentage War game, found in *Math Card Games* book, F48.

In conclusion. Ask: Which is more, one half or 60%? [60%] Which is more, three eighth or 20%? [three eighths] Which is more, two thirds or four fifths? [four fifths]

EXPLANATIONS CONTINUED:

Note that the final price for Store A is $$10 \times 50\% \times 90\%$ and for Store B it is $$10 \times 90\% \times 50\%$, which gives the same result.

Date:
Solve the following problems.
1. In a certain class 50% of the children are girls. There are 12 girls. How many children are in the class?
2. The usual tip at a restaurant is 15% of the cost of the food. Many people figure it out by first finding 10%, then finding 5%, which is half of 10%, and adding them together. What is the tip if the food costs \$8.00?
3. What is the 15% tip if the food bill is \$12.00? What is the total cost?
4. In some places people pay sales tax on certain things they buy. If the sales tax is 5%, what is the total bill for a car that cost \$4000?
5. The original price for a game is \$10.00. In Store A it went on sale at 10% off and then it went on sale again with 50% off of the sale price. In Store B it went on sale at 50% off and then it went on sale again with 10% off of the sale price. Which store has the better price?

Name:

Lesson 122: Isometric Drawings

OBJECTIVES:

- 1. To introduce isometric drawing
- 2. To practice visualizing objects
- 3. To make some simple isometric drawings

MATERIALS:

- 1. Warm-up Practice 12
- 2. Worksheet 94, Isometric Drawings
- 3. 35 centimeter cubes per child
- 4. Drawing boards
- 5. T-squares and 30-60 triangles
- 6. Colored 1" × 1" Tiles 10 per child

ACTIVITIES FOR TEACHING:

Warm-up. Distribute the warm-up practice sheets. Tell the children to do the second multivide on the page. Solutions are on the right.

Worksheet 94. Distribute the worksheets, centimeter cubes, drawing boards, T-squares, triangles, and tiles to the children. Tell them to tape the worksheet to their drawing boards.

Problem 1. Tell the children to read the instructions on the worksheet for Problem 1. Tell them to use their triangle to find the angles of the lines. [90° and 30°]

Explain that the word "isometric" (i-so-MET-ric) comes from two Greek words, "iso" meaning "equal" and "metric" meaning "measure." Ask: What other mathematical word starts with "iso"? [isosceles] What does isosceles mean? [equal legs]

Ask: What small figures makes up the background for the isometric drawings? [equilateral triangles] What is special about them? [All three sides are equal.] Say: This means that the units are the same in each direction. Isometric drawings are a way to show three dimensions on a flat surface.

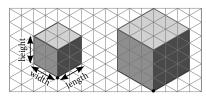
Tell the children that the terms width, length, and height do not have exact definitions. Sometimes breadth and depth are also used. Because of possible confusion, companies that sell boxes do not use these words to describe the dimensions of their boxes, but use drawings or just the measurements instead.

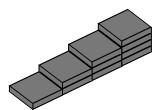
Tell them to make a cube with their centimeter cubes that measures 2 cm on a side. See the left figure on the next page. Then tell them to make another cube that measures 3 cm on a side. See the right figure. Ask: How does the length, width, and height change? [increases by 1 cm]

EXPLANATIONS:

16 (**7**) $\times 90$ (0) 1 440 (0) × 56 (**2**) 8 640 **72 000** 80 640 (0) × 72 (**0**) 161 280 5 644 800 9)5 806 080 (0) 8)645 120 (0) 7)80 640 (0) 6) 11 520 (0) 5)1 920 (3) 4) 384 (6) 3)96 (6) 2<u>)32</u> (5) 16

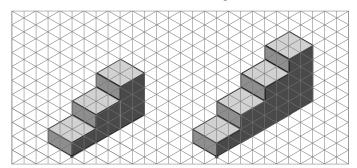
EXPLANATIONS CONTINUED:




Cube with 2 cm side.

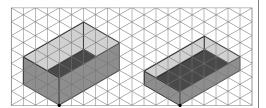
Cube with 3 cm side.

Tell them to draw the 3 cm cube for Problem 1. The solution is shown below. Tell the children to share their work with a neighbor and the class.



Problem 2. Tell the children to read the instructions for the second problem. Tell them to make the stairs they need with tiles first. See the figure below.




The stairs built with tiles.

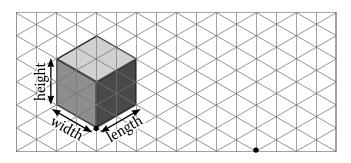
Then tell them to draw the stairs. The solution is shown below. Tell them to share with a neighbor and the class.

Problems 3 and 4. Tell them to complete the worksheet. The solutions are below.

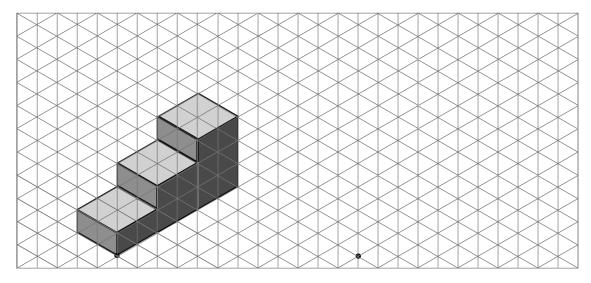
In conclusion. Ask: Do you see any rectangular prisms in the room? [possibly a brick, book, picture frame, box, table top, and window glass.]

Shading isn't strictly necessary, but it makes the figure more realistic.

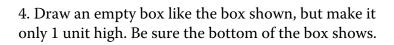
The children will need this worksheet for the next lesson.

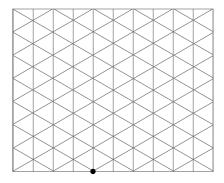

If there is additional time following this lesson, play the Card Exchange game, found in Math Card Games book, P27.

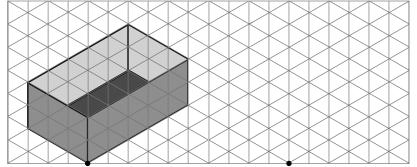
4.OA.C.5


Name:

Date:


1. The drawing at the right is called an isometric drawing. Isometric drawings show equal distances along the three dimensions: width, length, and height. Engineers, architects, and designers use isometric drawings to show how a product will look. The cube shown is 2 units on each edge. Using your drawing tools, draw another cube that is 3 units on an edge. Start at the dot. Make each side different by shading or hatching.




2. Copy the stairs, but make it one step higher.

3. Draw a rectangular prism (a box) that is 2 units wide, 4 units long, and 3 units high.

