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only one-third of the states use either one of them. A common crit-
icism is that most test questions are phrased in sentences, requiring 
good reading skills. This is especially difficult for those with learning 
disabilities or those learning English as a second language. One part 
of a third-grade sample question reads, “What is the total number 
of pennies Nolan has after he adds the 10 pennies from his pocket 
to the jar?” This question has 21 words and scores at grade 8.4 for 
readability according to the Gunning Fog Index.

Introduction Summary
A tragedy of mathematics education today in the U.S. is that 
about half of the adults have math anxiety. They were not born 
with this disorder. They learned it! Perhaps educators need a 
version of the statement from the Hippocratic oath: “Do no harm 
to the patient.” An oath to “Do no harm to the learning child” 
could benefit many.

Today, much more is known about how children learn. We 
know that rote memorization is temporary and needs frequent 
review. Twenty percent of children simply cannot memorize, yet 
they can learn math and apply it when they understand it. 

We also know children need good visual representations of 
mathematical concepts. To maintain continuing interest, math must 
be enjoyable. Math games are a good way to practice basic skills. 

Because so many jobs depend on math, we must remedy math-
ematics education for our own good, our children, our country, and 
the world.
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Number Sense 
This chapter defines number sense as determining and assigning 
a name to quantities. Topics include counting, subitizing and 
visualizing, place value, transparent number naming, and writing 
numbers. 

The Counting Dilemma
Counting is assumed to be the foundation of arithmetic, the door 
through which every child must pass on the way to basic numeracy. 
It seems like we’ve been teaching counting forever. It is so ingrained 
in our culture that we assume every preschooler is working on 
their counting and their ABCs. We may have grown up carrying 
out copious counting activities ourselves. Could counting be less 
of a foundation than expected? In fact, could counting possibly be 
a problem? 

Parents, grandparents, guardians, daycare providers, teachers 
and aides, math coaches, textbook writers, program developers, 
counting-book authors, professors, researchers, and others spend 
countless hours devising better ways of teaching counting. Many 
state standards list counting to 100 as the very first standard. This 
is considered to be part of kindergarten readiness. Children from 
disadvantaged homes who haven’t memorized the list are behind to 
start and rarely catch up, making this a possible equity issue. 

Rarely do people question if counting is the only, or the best 
way, to learn arithmetic basics. They assume counting is a natural 
process that would merit the “generally regarded as safe” (GRAS) 
label. However, these seemingly innocuous practices might not be 
so harmless after all. Think about how we thought lead in gasoline 
and asbestos for insulation were great solutions until we learned 
about their negative side effects. 

Some children find counting very difficult. I remember reading 
the disheartening message written by a mother of a child with 
Down syndrome who lamented that her child would not be able to 
learn mathematics because he could not memorize the one-to-ten 
sequence.
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Working with quantities is the foundation of beginning 
arithmetic; however, one-by-one counting is not the best way to 
achieve it.

History of Counting
According to the American Heritage Dictionary, the word count 
does not necessarily mean to recite numbers in ascending order. It 
can also mean to include or determine the total number in a collec-
tion. For example, scientists say Pluto no longer counts as a planet. 
This dual meaning makes it difficult deciphering old texts to deter-
mine whether oral counting was actually used.

We do know that for centuries a variety of peoples avoided 
counting by doing their calculations on abacuses, which were 
designed to make counting by ones unnecessary.  Indigenous 
peoples in Australia and Brazil have languages that do not have 
counting words beyond three. Yet, these people are able to perform 
some basic mathematical tasks.

Some will say that young children love to count; they appear 
to perform the counting ritual at every opportunity. But are they 
doing this to please the adult? Or maybe they like the repetition? 
However, if the counting activity is innate, why don’t indigenous 
children, whose languages do not have counting words, invent 
words so they can count? Why does it take a child five or six years 
to become proficient in counting when they master many of the 
complexities of the English language by age three?

Counting All and Counting On
One purpose of counting is to teach simple addition. Two sets of 
objects are given to the child to add, either physical objects or pic-
tures of objects. The child is asked to count the two sets to find 
the total. Later, the child is given an expression, such as 3 + 2. The 
child counts out 3 objects and then 2 objects, combines them, and 
then counts the whole group: 1, 2, 3, 4, 5. This procedure is called 
counting all. 
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Later, the child is taught to add the expression 9 + 2 by starting 
at 9 and counting 2 more objects, pictures, or the number words 
themselves. This process is called counting on or counting up.

To subtract, children are frequently taught to count back. To 
find 8 – 3, the child is instructed to start at 8, then, count backward 
three numbers: 7, 6, 5. This type of counting is called counting back 
or counting down. Unfortunately, children can become confused 
and include the 8 when counting backward; 8, 7, 6, producing a 
wrong answer. 

How does counting affect children’s later mathematical ability? 
Educational psychologists study which mathematical practices in 
the early years contribute to students’ later mathematical achieve-
ment. According to researchers (Geary et al. 2013), the numerical 
ability, or number sense, of adolescents was correlated with their 
knowledge of the number system in kindergarten. But, they found 
no correlation between adolescents’ numerical ability and their 
kindergarten ability to solve problems by counting. In other words, 
adolescents’ mathematical ability was hampered by their reliance 
on counting.

Experiencing Counting as a Child
Parents are so proud when their child can count to 100. This is a 
memorable achievement. It took considerable time and effort on 
the part of the child, parents, caregivers, and teachers to memorize 
that long list of words. Even so, memorizing that long list is only the 
first of several counting tasks children are expected to master. They 
must learn that litany so well that they can start and continue from 
any number. In other words, they can tell you what number comes 
after 12 or after 39 without starting from one. 

To appreciate this difficulty, think of the familiar nursery 
rhyme, Jack and Jill. Name the word that comes after “hill” without 
starting from the beginning. Challenging! This skill is needed to add 
by counting on. For example, to add 39 + 3, you must start at 39 
and count the next three numbers, 40, 41, 42, without starting at 1.

Next, name the word that comes before “hill” in the Jack and 
Jill rhyme, again without starting from the beginning. Almost 
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A curious mix of counting the days of school with unrelated 
computation occurred in a Maryland classroom when a teacher 
announced, “This is the 82nd day of [school this year], and what 
would happen if we took away 26?” (Strauss 2005). I wonder why 
someone would want to take 26 days from the time that has already 
passed. Do they want to include or exclude weekends? How is this 
even remotely practical or useful?

Adding by Counting 
The vast majority of children are taught beginning adding by count-
ing. To add 4 + 3, they count 4 objects, then, 3 more objects, and 
then, count them all. Or, they could start with 4 and count the re-
maining 3 objects. By doing this numerous times, children are ex-
pected to learn their facts. 

It is informative to experience this process from a child’s 
perspective. Let’s do this using the letters of the alphabet instead 
of the familiar number names. So, A is 1, B is 2, C is 3, and so forth. 
Now, let’s add F + E.

First, count out F counters. See Figure 1.2. 

Next, count out E counters. See Figure 1.3. 

 How much is this when you add them all together? Remember 
that your answer must be a letter, not a number. See Figure 1.4.

FIGURE 1.2  F counters

Curiosity question: Did you use one-to-one correspon-
dence to name each dot in Figure 1.2 to check the 
quantities?

FIGURE 1.3  E counters
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FIGURE 1.4  F + E counters

Curiosity questions: Did you use the counting all 
procedure by starting at A and counting to K? Or, did 
you count on from F: G, H, I, J, K?

How could you add D + C without physical counters? Try using 
fingers. Start by raising D (four) fingers. Next, extend one finger 
while saying A; extend another finger while saying B; and one more, 
saying C. Counting them all gives the answer G. How did you get 
to G? Did you just know that seven fingers was G, or did you have 
to count them all?

In addition to counting on with physical objects or fingers, 
counting on could also be accomplished by counting number words, 
called double counting. For this example, D + C, count on by saying 
A is E, B is F, and C is G. If you find this burdensome, imagine what 
it’s like for a six-year-old child. Some students have unfortunately 
resorted to using the 12 numbers on a clock to double count. For 
example, to add 8 + 6, start with 8, look at the 1 on the clock and say 
9, look at the 2 and say 10, look at the 3 and say 11, end at 6 and say 
14. The obvious drawbacks to this process include a slow, confusing 
counting method and the need for an analog clock.

These counting-on activities require a solid knowledge of the 
number sequence. This explains why kindergarten standards state 
that students must be able to start at any number in the sequence 
from 1 to 100 and continue counting, all without starting back 
at one. 

However, not all children worldwide use counting-on proce-
dures. Japanese children are not taught to use counting on; actually, 
they use few counting procedures for adding or subtracting. More 
on that later.

Because, you now understand what addition looks like to a child, 
try memorizing some facts. See the flash cards in Figure 1.5. 
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D + B = C + H = E + G = F + F =

FIGURE 1.5  Addition flash cards

As you quickly realize, this is a very challenging task. Note that when 
counting is employed to find sums, place value is simply ignored. It 
isn’t even needed. Fourteen is simply thought of as 14 ones, not as 
1 ten and 4 ones, just as N is not thought of as J and D more. 

Subtracting by Counting
Subtracting is considered more difficult than adding because going 
backward is significantly harder than going forward. Use the alpha-
bet for numbers again. How would you subtract G – D? Start by 
counting out G dots, as shown in Figure 1.6.

Now, do you move aside one dot while reciting each letter: A, 
B, C, D, and then, count the remaining dots, A, B, C, to get the 
difference, or answer, C? See Figure 1.7. Or, did you start at the last 
counter and count backward four letters: F, E, D, C? A bit chal-
lenging, right? 

Using your fingers to help subtract, you could count backward 
D times. Raise G fingers and put a finger down each time a letter is 
recited, F, E, D, C.

Without any counters or fingers, the double-counting proce-
dure is another option. Start at G, and count backward D times. It 

FIGURE 1.6  G counters

FIGURE 1.7  G – D counters
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in long-term memory. I saw this in a school in England where the 
children were becoming fast counters but were not mastering the 
facts. Their low scores on a timed test prompted the paraprofes-
sional to chide the pupils for not studying enough. How long would 
you have to practice to learn the B’s facts fluently? Would you still 
know them a week from now?

Summing Up
Memorizing the counting words to 100 is an arduous undertaking 
expected of young children. The added requirement that they must 
be able to continue from any place in the list makes the chore con-
siderably more burdensome. Many educators expect this assign-
ment to be mastered near the start of kindergarten. 

However, many children have disadvantages making this task, 
more difficult, if not impossible, to meet this goal. Twenty percent 
of children have memory problems resulting from dyslexia, brain 
injuries, premature birth, multiple surgeries, or other conditions. 
Also, they might not have enough support at home. Their parent 
or guardian might work long hours, have language barriers, be 
deployed, incarcerated, or simply absent. 

 Counting itself has downsides. Unfortunately, once counting 
has been established as the basis for solving basic arithmetic 
problems, it is a very difficult habit to abandon, although it can be 
done. Using rote memorization to introduce children to mathe-
matics perpetuates the myth that learning mathematics means lots 
of memorizing.

Counting does not foster mathematical growth. In fact, it 
doesn’t work in many situations, for example, fractions or money 
(a coin might have a value of 25). It’s even regarded as a bad habit 
for the older child. Counting is not the center of mathematics any 
more than the earth is the center of the solar system.

Using counting to instruct young children in mathematics is 
so ingrained in Western culture that it is difficult to conceive of any 
other way of teaching mathematics. This is not an excuse to avoid 
looking for better ways. As an advertisement from Indigo Company 
states, “We didn’t get to the moon by accepting that man can’t 
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fly. We didn’t get smartphones by stopping at smoke signals. We 
didn’t get the car by accepting the horse. Progress isn’t driven by 
accepting things as they are. It’s driven by asking questions” (Indigo 
2019). And we need to ask if counting is the true cornerstone of 
mathematics. We say absolutely not!

Subitizing and Visualizing
Babies at 5 months of age can add and subtract up to 3. This amaz-
ing finding resulted from Karen Wynn’s research (1998). In her sim-
plest experiment, Wynn showed a baby two dolls, then, set them on 
a table in front of the baby. The researcher lowered a screen that 
hid the dolls. Next, the researcher showed the baby a third doll, 
and while the baby watched, placed it behind the screen. Then, the 
screen was raised.

To appreciate what happened next, you need to know that a 
baby, like us, will look at a novel situation longer than an expected 
situation. When the baby saw the anticipated three dolls, the baby 
didn’t gaze at them for very long. The experimenter recorded how 
long the baby looked. For the next trial, the experimenter repeated 
the process but removed one of the three dolls without the baby’s 
knowledge before the screen was raised. The baby anticipated three 
dolls, but only saw two, and looked significantly longer as if to say, 
“I know there were three dolls; where is the missing one?”

Think about what the baby has done. The baby added one doll 
to the original two dolls. Remember that the baby never saw all 
three dolls together, and yet they expected to see three. Do you 
think the baby counted the bears to perform the addition? Highly 
unlikely. The baby subitized the number of dolls and visualized 
them to find the sum.

Subitizing
The ability to detect quantity without counting is called subitiz-
ing. This term was coined by Cornelia Coulter at the request of 
Kaufman and colleagues (1949), who wanted an appropriate new 
word with no other associations. Their study showed subitizing was 
a skill distinct from counting or estimating. 



Multiplication   151

Multiplication
When thinking of the basic operations of arithmetic, multiplication 
is often thought of as adding the same number together multiple 
times. For example, 6 multiplied by 3 is the same as 6 + 6 + 6. 
Although multiplication is repeated addition at its simplest, the 
model of repeated addition does not work for multiplying fractions 
or multiplying negative numbers. Presenting multiplication only 
as repeated addition will set up students for future challenges and 
misunderstandings. 

Arrays are a better way to introduce multiplication. To find 
the total number of objects, multiply the number of objects in a 
row by the number of rows, 6 × 3 = 18. See Figure 5.1.  

A common application for multiplication is finding area. 
When only dimensions are given, as shown in the left rectangle of 
Figure 5.2, the rote procedure of multiplying the base times the 
height provides little meaning. However, when square units are 
drawn in the rectangle, as shown in the right rectangle, it becomes 
clear that the total number of square units is the number of units in 
a row (width) times the number of rows (height).

FIGURE 5.1  Multiplying the number of objects in a row by the number 
of rows gives the total number, the product.

6 × 3 = 18

FIGURE 5.2  Area of the rectangle is 4 × 3 = 12 cm2.

3 cm

3 cm

4 cm 4 cm
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I mentioned to a young lady, who was taking advanced 
math in high school, that a square was a rectangle. She 
replied that they had different formulas: the area of a 
square was s2, while the area of a rectangle was wh. 
Even the perimeters were different: 4s and 2w + 2h. She 
was astonished to find the formulas were the same when 
s was replaced with w and h. She had never connected 
the two, as the words were not the same.

Another application of multiplication is used with compar-
ison situations. An example of this is finding the number of hours 
Morris worked, when Morris worked three times longer than Dana, 
who worked 2 hours. The expression is h = 3 × 2 = 6 hours. 

Also, multiplication solves combination problems, such as 
how many different outfits are possible with four shirts and two 
pairs of pants, as shown in Figure 5.3. 

The usual way to teach beginning multiplication involves the 
terms multiplicand, multiplier, and product. The multiplicand is 
the quantity being multiplied; the multiplier is the number of times 
the quantity is being multiplied, or duplicated; and the product is 
the answer. Therefore, the expression 6 × 2 means 6 is taken, or 
repeated, a total of 2 times. Using words, the expression becomes 
multiplicand × multiplier = product.

Unfortunately, elementary school textbooks often interpret 
the expression of 6 × 2 as 6 groups of 2. In other words, the 2 is the 
quantity being operated on, not the 6. This is inconsistent with the 
other operations of arithmetic. Consider that:

• 6 + 2 means start with 6 and modify it by adding 2.
• 6 – 2 means start with 6 and modify it by removing 2.

FIGURE 5.3  Combinations of 4 shirts and 2 pants: 4 × 2 = 8
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• 6 ÷ 2 means start with 6 and modify it by dividing 6 into 
2 groups or into groups of 2s.

Consequently, to follow this pattern, 6 × 2 should be inter-
preted as starting with 6 and modifying it by duplicating 6 a total of 
2 times. Part of the confusion results from the meaning of the word 
“times.” The dictionary defines times as “multiplied by.” With this 
definition, 6 × 2 should be read as “6 multiplied by 2,” which is 
consistent with 6 taken 2 times. A visual image of these operations 
is shown in Figure 5.4. 

This confusion over the meaning of the multiplication expres-
sion is not a new problem. In 1894, in an attempt to explain the 
correct meaning, Prince (p. 14) wrote, “In the same way 4 × 2 means 
that 4 is to be multiplied by 2 and that it be read 4 multiplied by 2.”

Note that the sign for multiplication, which has been in use 
since the 1600s, is not an “x,” but “×.” It can be thought of as the 
addition sign, +, turned 45 degrees. 

The symbol, ×, is not the only way to indicate multiplica-
tion. Programmers and spreadsheet software use the asterisk 
symbol, *, as in 6 * 2. Sometimes, a middle dot is used, such as 6 · 2. 
Juxtaposition with no sign means multiplication; for example, ab in 
algebra means a and b are multiplied together. 

6 + 2 = 8: Start with 6 and add 2.

6 – 2 = 4: Start with 6 and subtract 2.

6 × 2 = 12: Start with 6 and multiply by 2.

6 ÷ 2 = 3: Start with 6 and divide by 2.

FIGURE 5.4  The arithmetical operations involving 6 and 2

or
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My kindergartners enjoyed using the middle dot 
and the asterisk as substitutions for the traditional 
multiplication sign.

Sometimes, people insist that the multiplicand be represented 
by concrete objects, and the multiplier is an abstract number of 
times. This does occur with simple groups, as shown in Figure 5.5 
on the next page, where the multiplicand is the three concrete rect-
angles, and the multiplier is the abstract four times.

There seems to be two formulas for finding the area of 
a rectangle: width × height or base × height. Of course, 
they are interchangeable and will produce the same 
results. But, there is a future problem pending when 
faced with the area of triangles. 
Generally, the formula for the area of a triangle is 
considered to be 1/2 × base × height. There are two 
concerns with this. First, when presented with the left 
triangle shown below, where is the base? Second, if the 
formula for a rectangle is known as width × height, there 
is little correlation between that formula and the formula 
of a triangle, other than a height measurement. 
If the area of a rectangle is considered to be 
width × height and the formula for the area of a triangle 
is 1/2 × width × height, then, it is a quick jump to the 
realization that the area of a triangle is half the area of a 
rectangle. This is seen in the second figure. Also, when 
using the formula of 1/2 × width × height, any of the 
three sides of the triangle could be the width.

FIGURE 5.5  Multiplying 3 × 4. The 3 is concrete, but the 4 is abstract.
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Years ago, I tutored Mike, a third grader with learning 
disabilities. He had no exper ience with fractions and 
was moving to a new school in another city. On our last 
day together at the end of the school year, I suggested 
we work on fractions because his next class may have 
already worked on them.
I started by having Mike assemble the fraction puzzle 
and the stairs. Next, we worked on the fraction names. 
Then, I asked him to compare 4 and 5, to compare 1/4 
and 1/5, and asked how many fourths make a whole. 
Finally, I explained that 3 one-fourths is written as 3/4.
At the end of the 45-minute session, I said, “Mike, 
don’t think you know everything about fractions. We 
haven’t done something like 1/4 plus 1/8.” Mike briefly 
studied the fraction chart, then announced confidently, 
“Three-eighths!”

Fractions Totaling One
Children need to apply the concept that three-thirds or four-fourths 
is equal to one, or a whole, to fully assimilate it. I was visiting a 
school where several classes were playing the game, “Concentrating 
on One” (Cotter 2010, p. 119). In this memory game, players match 
cards that total one, such as 2

5  and 35 . The children were instructed 
to look at their fraction chart, find the two-fifths place, and see how 
many more fifths are needed to make 1, which is three-fifths. 

One teacher said her students didn’t need their charts. She 
had taught them a rule that to find the numerator for the matching 
card, subtract the two numbers on the first card. The result will 
be the numerator for the needed fraction, while the denominator 
remains the same. Sadly, these students were not even thinking 
about fractions; they were playing a simple subtraction game. Of 
course, it is true that the two numerators will equal the denomi-
nator, but that is for the children to discover while they explore and 
increase their understanding of fractions.

After class, that same teacher told me her children still didn’t 
understand that five-fifths made a whole. I suggested she have her 
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students use the fraction charts. They needed to use the chart to 
learn and explore the relationships between the fractions.

Comparing Fractions
Comparing fractions is a major topic in learning fractions. Students 
are often asked test questions like, “Which is more, 45 or 56 ?” They’re 
expected to think, using circles, that 56 is a whole circle, less 16, and 
4
5 is a whole circle, less 1

5. Because 1
6 is less than 1

5 , that means 5
6  is 

greater than 45. How complicated! 
A much simpler approach is to refer to the fraction chart. See 

Figure 7.15. 

Several strategies are available. These are not rules to be 
memorized, but observations from the fraction chart. If the denom-
inators are the same, the larger numerator is the larger fraction; 
for example, 5

7 is greater than 2
7. If the numerators are equal, then, 

the larger denominator signals the smaller fraction; for example, 
 3  
10 is less than 3

8. Once the students are thoroughly familiar with 
the fraction chart, the physical chart will no longer be needed, like 
the  abacus.

 The top figure in Figure 7.16 on the next page shows only 
the fraction pieces for ones, halves, fourths, and eighths. The next 

FIGURE 7.15  Comparing four-fifths and five-sixths
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figure shows the same fractions, without the written fractions. The 
bottom figure shows the horizontal lines removed. Voila, the divi-
sions of an inch on a ruler! Students and adults alike have been 
amazed to learn how the common ruler is constructed. 

Children enjoy playing the Fraction War game (Cotter 2010, 
p.  121), where they compare fractions involving ones, halves, 
fourths, and eighths, such as 12, 34 , and 58 , by referring to the fraction 
chart, as shown in Figure 7.16. An added bonus for these players is 
that they learn how to read a ruler.

Fractions Greater Than One
Much ado is made about fractions being more than one. The 
historical view of fractions, with its limiting part-of-a-whole 
mentality, further contributes to the paradigm that a fraction must 

The fraction chart with ones, halves, fourths, and eighths.

The written fractions are removed.

The horizontal lines are removed.

FIGURE 7.16  The source of the inch divisions on a ruler

1

1
4

1
4

1
4

1
4

1
2

1
2

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8




